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ABSTRACT 

The use of second order closure turbulence model in predicting 

turbulent flows is known to be more successful than the classical mixing 

length model.  However, it is found that if the turbulence constants are 

not altered or modified, the second order closure turbulence model is 

unable to predict satisfactorily for some flows such as round jet and 

wake flows. In order to improve the predictability of the second order 

closure model, the present work proposes to consider two turbulent 

scales in the modelling of turbulent flows. One of these scales is based 

on using the turbulent kinetic energy, k, and its dissipation rate, e, 

to characterize the large energy containing eddies. The other scale is 

based on the dissipation rate, s, and the kinematic viscosity, v, to 

characterize the small energy dissipating eddies.  The second scale is 

based on the well known Kolmogorov hypothesis that dissipation of 

turbulent kinetic energy occurs primarily at small eddies.  The 

turbulence model derived based on the concept of two different scales is 

called the two-scale turbulence model. The existing turbulence model 

which is modelled based on the one-scale concept of k and t   is called 

the one-scale turbulence model. 

The two-scale turbulence model is then applied to predict 

turbulent free shear flows and recirculating flows.  The calculations 

were done in three parts.  The first test case was nonbuoyant free shear 

111 



flows which included round and plane jets in stagnant and moving 

streams, plane wakes and mixing layer. In the second part, the model was 

tested for plane and round buoyant jets having different Froude numbers. 

Finally, some results were obtained for recirculating flows, namely, 

backward facing step and flow past an obstruction. 

It is shown in the present study that the two-scale turbulence 

model performs significantly better than the one-scale turbulence model 

in all the cases concerned. The prediction capability of the two-scale 

turbulence model is shown since one does not need to alter or modify the 

turbulence constants as in the case of the one-scale turbulence model. 

im- 
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NOMENCLATURE 

A constant 

C C with subscripts are turbulent constants 

^k' ^r ^r  ^3' ^z' ^zv  ^E2' ^T' ^TI' 

^T2' ^3' ^y' ^91- 

c or c     specific heat 
P 

D spectral dissipation function; 

diameter of round jet 

E energy spectrum function 

e dissipation of turbulent kinetic energy 

F Froude number 

G modification function proposed by Rodi for C  ; 

g^ body force in the ith direction 

g gravitational constant 

g£ acceleration due to gravity in the x. direction 

H channel or step height 

k turbulent kinetic energy u.u./2; 

wave number 2ITL/X 

L characteristic length 
3/2 

1 length scale k  /E for energy containing eddies 

M grid spacing for isotropic flow 

momentum equation for fluctuating component 

in X, direction 
1 

Xlll 

m 



N number of data in ensemble average 

n .        frequency 

P pressure; production of k or uTu,, e.g. P.., P . 

p pressure fluctuation 

fit Prandtl number 

q heat flux 

R..       velocity correlation function between i and j 

components 

Re        Reynolds number based on characteristic 

length L and mean velocity U 

Re,        Taylors's Reynolds number based on fluctuation 

u' and Taylor's microscale X 
S 

r        radius vector 

S(k)       spectral transfer function 

T mean temperature 

t time; time scale, k/e, based on (k,e) and 

/(v/s) on (v,e) 

tl mean velocity in x-direction 

u velocity fluctuation in x-direction; 

characteristic velocity scale 

V mean velocity in y-direction 

V velocity fluctuation in y-direction 

w velocity fluctuation in z-direction , 

X coordinate along direction of flow 

y coordinate along the direction normal to the flow 

D/Dt total or substantial derivative 
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[   ] characreristic dimension 
2 

y Laplacian operator 

Greek Symbols 

a thermal diffusivity 

B volumetric expansion coefficient 

5-. Kronicker delta 6=1 if i=i and 6=0 if i#i 

V kinematic viscosity 

^ Kolmogorov length scale i.e. 

^ Taylor's microscale 

s dissipation rate of turbulent kietic energy, k 

W molecular viscosity 

p density 

9 temperature fluctuation 

0 turbulent constant for turbulent diffusion 

in turbulent transport equations 
* ■ 

♦ instantaneous quantity; 

0 viscosity friction term; time or ensemble average of ip' 

t laminar stress t..; turbulent stress t..* 

V mean stream function 

IT constant 3.14159 

Subscripts 

a ambient 

b buoyant quantity 

I" centerline or axial location 
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d energy dissipating eddy scale 

E free stream condition 

e energy containing eddies       ••■■. 

i x-dirction 

j y-direction 

k turbulent kinetic energy 

l,m,n dximmy  indices 

N nozzle condition 

c centerline condition 

s static state 

T temperature e.g. P 

t turbulent quantity e.g. x.. ; total quantity e.g. P^ 

W constant for eddy viscosity e.g. C 

X based on Taylor microscale 

9 temerature fluctuation e.g. s-, 
0 

0.5       half-width where U=0.5U or T=0.5T 
o        o 

Superscripts 

fluctuating quantities e.g. k',^'; 

dimensionless quantity e.g. x',k'; 

t turbulent quantity e.g. q , i.. ; 

{ 1       average e.g. u.u.; 

* instantaneous quantity e.g.U,!;, 

-*■ vector e.g. r (space vector); k (wave vector) 

3 j=0 for two-dimension case; j=l for 

axisymmetric case 
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CHAPTER I 

INTRODUCTION 

,;••;,     1.1 Motivation of Research 

Many fluid motions that occur in nature are turbulent, e.g. flow over 

aeroplanes, ships and cars, flow in jet engines and turbines, flow 

through pipes and ducts, weather patterns and ocean waves. Turbulent 

flow is a complex phenomena that plays an important role in many 

engineering designs.  Therefore, it is important for engineers to study 

and understand this complex flow and be able to predict it. Equations 

for describing the fluid motions, known as the Navier-Stokes equations, 

have been postulated and derived for over a century.  However, it is 

difficult to solve these equations for both laminar and turbulent flows 

mainly due to the nonlinearity of the equations.  For turbulent flows, 

the problem is even more formidable because the turbulent fluid motion 

is irregular, random, time dependent and three dimensional. However, in 

most engineering applications, the detailed analysis of instantaneous 

turbulent motion is not necessary and the gross parameters^like mean 

velocity, average pressure, mean temperature, wall shear stress and wall 

heat flux are often sufficient for engineering design. 

In 1895, 0. Reynolds [1] proposed an averaging technique by assuming 

that the variable i* at any instant consists of the mean quantity 0 and 

a fluctuating part (p'.   Hence, 



0=0 + 0 

The time averaging process when applied to the Navier-Stokes equations, 

creates six additional unknowns.  These unknowns, although called 

Reynolds stress, are created from the convective or non-linear terras of 

the Navier-Stokes equations. In order to solve the turbulent flow 

problem from the time averaged Navier-Stokes equations more equations or 

empirical relations are needed for Reynolds stress.  Methods for 

deriving equations which specify a relation between the Reynolds stress 

and the mean flow quantities are called turbulence models.  In other 

words, a turbulence model is needed to recover the information of 

turbulent motion that is lost in the averaging process. There are many 

turbulence models proposed to date. However, these models can predict 

accurately time averaged turbulent flows only for a certain class of 

problem. A more general model is needed if one expects a turbulence 

model to have a better prediction capability and a practical value for 

engineering applications. 

The purpose of this research work is to introduce a new physical 

concept into the modelling of turbulent flows and to improve 

predictability of the model. The new model is developed for the second 

order turbulence correlation based on the concept of two turbulent 

scales, one for large or energy containing eddies and the other for 

small or energy dissipating eddies. The two-scale turbulence model is 

first tested and verified for a class of turbulent flows called 'Free 



Turbulent Shear Flows'.  In free turbulent shear flows, shear stress, 

heat flux and diffusion are significant in the directions perpendicular 

to the direction of flow and there is no solid wall in the flow domain. 

Some examples, shown in figure 1.1, are mixing layer, coaxial and plane 

jets, plumes, buoyant jets and wakes. The two-scale turbulence model is 

then used to predict some turbulent separation phenomena such as flow 

separation behind a step as shown in figure 1.2. 

There are several reasons for selecting free turbulent shear flows to 

test the turbulence model.  First, free shear flows, as shown in figure 

1.1, have a weak pressure gradient so that the flow characteristic is 

largely controlled by turbulent shear motion which affects diffusion, 

production and dissipation of turbulent motion and not by pressure 

force. Therefore, the prediction of turbulent free shear flow is more 

sensitive to the turbulence model than flows with large pressure 

gradient.  Secondly, abundant experimental data are available and 

comparison between predicted and experimental results can be made in 

detail. Thirdly, the complication of near wall turbulence is not 

present in free shear flows so that the accuracy of the two-scale 

turbulence model can be carefully examined without the interference of 

wall turbulence.  Fourthly, turbulent shear flows have a number of 

practical applications and play an important role in various engineering 

design.  Jet engines, chimney plumes, jet streams in atmosphere, wakes 

behind aeroplanes and ships and cooling water disposal in rivers are 

some of the examples. Though some of these flows have walls in their 
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vicinity, the study of free shear flows is, nevertheless, a first step 

in understanding problems and phenomena involved. 

1.2 Historical Development of Turbulence Models 

In this section, a brief historical review of turbulence modelling is 

made leading to a discussion of the problems in some of the models. In 

order to resolve the difficulties in the existing models, a new model is 

presented. 

As mentioned earlier, the need of turbulence modelling arose when 

Reynolds [1] proposed the averaging process to obtain governing 

equations for turbulent flows. To faciltate the discussion, the- Navier- 

Stokes equations and the energy equation for incompressible flow are 

written here as 

(1.1) 

* 
au. 

* 
DU. 

*            ,  * 
ap        a^u. 

4     y             ^ 
Dt pax. ' "ax.ax. 

1          j    j 

(1.2) 

 *       *    , * 
DT   * au.  a^T 

Dt   ^^ax.  ^ax.ax. 
J    J J  .   . 

The instantaneous quantities for velocity, pressure, stress and 

temperature U. , P , T.. , T are denoted by 

* * * if 

U..  = U + u ;  P = P + p;  T   = T . . + t . . ' and T ■ = T + 9 
^ ^ 1 ij    ij   ij 



where the quantities on the right are the mean, U., P, T.., T , and 

fluctuation, n^,   p, t^ ', 6, of velocity, pressure, stress and 

temperature.  These are substituted in the xNavier-Stokes equations and 

averaged by a short time average or ensemble average to give 

3U. 

Du.    3P   a^u.   aim 
^ -       ■    1     -1_1 (1.5) + v: Dt     p3x.    8x.3x.   3x. 

1     J  J    J 

DT  ^ 3U.  a^T   au.9  T..'au. 

Dr= ^Ja^ ^ ^am: - a^r-^ ii aZ ^^-^^ 

These set of equations introduce additional unknowns TTu.."r  '(au /ax ) 

and u^9.  Models proposed so far to evaluate these unknowns have them 

coupled to the mean quantities through either algebraic or differential 

equations. Some are based on empirical relation and others on 

postulations. 

In 1877, Boussinesq [2] proposed the concept of eddy viscosity which 

assumes that, in analogy to the viscous stresses in laminar flows, 

turbulent stresses are proportional to the mean velocity gradients. For 

general flow situations, it is expressed as 

3U.  au. 
1 ,   1 ■,   2. 

^^j =^t^^^ aT^ - 3^^ii (1-7) 



V  is the turbulent or eddy viscosity which, unlike molecular viscosity, 

is not a fluid property but depends on the state of turbulence, k 

represents the kinetic energy of the fluctuating motion or u u /2.  The 
11 

above expression, however, does not close the problem of turbulent flows 

as v^ and k are still unknowns.  In 1925, Prandtl [3] proposed a 

turbulence model called the 'mixing length' model. This model provides a 

relation between the eddy viscosity, a length scale L characterizing the 

size of turbulent eddies and a suitable velocity scale, V.  Thus 

Both the turbulent velocity scale, V, and the mixing length scale, L, 

could be reasonably approximated for many flows. However, for such 

flows, empirical constants were needed to prescribe a length scale. In 

most of these flows, the constants were obtained by fitting the 

calculated results to experimental data of a particular flow under 

study. These mixing length model constants were found [4] to vary often 

from one flow to another.  Consequently, the mixing length turbulence 

model is successful only in predicting turbulent flows in similar 

geometry and flow conditions but lacks the iiniversality and 

predictability when the turbulent flow and geometry conditions are 

different.  Other models [5,6], similar to the mixing length model, were 

shown to have success in a given flow but lacked generality when flow 

conditions and configuration changed. 



To overcome the lack of predictability and generality, several more 

complex models [7,8] were developed during the 1940's and 1950's which 

employed differential transport equations for the turbulent quantities. 

However, these equations could not be solved directly as there were 

mathematical difficulties involved and numerical techniques and fast 

computers were not available.  Alternatively, the governing partial 

differential equations for turbulent flows were often integrated and 

reduced to ordinary differential equations. These integral methods 

assumed some shape of mean profile and used some empirical relations for 

global behavior of turbulence. They lacked flexibility since the assumed 

profile must be approximately the same in the flow field and could not 

be applied for different flows. 

Advances in computational facilities and numerical methods during the 

late 1960's and 1970's led to the use of more advanced models which 

solve complete partial differential equations for both mean flow and 

turbulent quantities. One of these models which solves the differential 

equation for k, the kinetic energy, is called the one-equation model as 

opposed to the zero-equation model where no differential equations are 

solved for turbulent quantities.  With the kinetic energy known, the 

eddy viscosity can be written as 

^ = V I- (1-8) 

where k represents a velocity scale, L the length scale and C  an 

empirical constant. The equation for k is 
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"'■•^  Dk _ 3  .^t 3k ,      i      r  ^ 

which is derived from the governing equation of fluctuating turbulent 

motion. Details of the derivation are given later.  Here, C and a  're 

empirical constants.  This one-equation model is not complete unless the 

length scale L is specified. In most cases, L is a variable and is 

obtained from simple empirical relations similar to those for the mixing 

layer. '' ■  • • ^  ■ 

Since one-equation models [9,10] account for the convective and 

diffusive transport of the turbulent kinetic energy, they are superior 

to the mixing length models in flows where the transport mechanism is , 

important. Some examples are non-equilibrixim boundary layers with 

rapidly changing free-stream conditions, boundary layers with free- 

stream turbulence and recirculating flows. However, in many flows it is 

difficult to specify the length scale empirically. The logical extension 

of the turbulence modelling is that the length scale be obtained from a 

differential transport equation. 

Models which solve differential equations for both turbulent velocity 

scale or turbulent kinetic energy and length scale are known as two- ,- 

equation models. Several different models [4,11] have been proposed 

which, in addition to the equation for k, solve an equation of the form 

k L instead of L. The most popular one is the one suggested by Jones ,: 

and Launder [11] which has m=1.5 and n=-l. The term k " L' which ,,.-,-.. 
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appears in the lasr term of equation (1.9), has a physical significance 

as it has the same dimension as e, the dissipation of turbulent energy. 

The dissipation function of turbulent kinetic energy, z  or 

v(au^/3x )(au^/3x ) can be derived and modelled as 

Dt - 3^[^s E ilT^ " ^£1 k ^i^j 377 ■ ^E2 k (1-10) 
J       J J 

Details of the derivation of equation (1.10) are given later.  Here, C 

C^^ and C^2 ^^^ empirical constants.  The k-e model with eddy viscosity 

from equation (1.7) now requires six emipirical constants C  o  C 
y'  k'  D' 

This k-s model has been used in the calculation of boundary layer 

type of flows as well as recirculating flows.  The model now can predict 

large number of different flow configurations and conditions and is 

certainly more general than the mixing length turbulence model.  Though 

this model has a wider range of application in the past fifteen years, 

it still lacks universality as the coefficients need to be adjusted from 

one flow to another. As an example, the constant C   in the e-equation 

has a value between 1.90 and 1.92. Using this value of C ,, a reasonably 

good prediction of plane jet flow can be made. However, if the value of 

this constant is slightly outside this range, the solution becomes 

sensitive to the constant and does not converge. Furthermore, the value 

of C^2 between 1.90 and 1.92 which gives good prediction of plane jet 

flow cannot be used for a round jet since it produces a 30% error in the 
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spread of turbulent round jet. For a round jet, the value of C   is 

found not to be a constant and is changed [4] to 1.92"(1-0.035G) where 

y, 3U    3U   ""^ 

Another problem is that, if these modified k-e model equations (1.7), 

(1.8), (1.9), (1.10) and (1.11) were used for the calculation of plane 

wake flow, there is a 30?i under-prediction in the growth or spread of 

the wake.  This difficulty is further taken care of by making the 

constant C  in equation (1.7) a function of P/e [4] where P is the 

production of turbulent kinetic energy -u.u.(3U./3x.) and e is the 

dissipation of this energy, v(3u./3x.)(3u./3x.). 

It should be remarked here that these difficulties are mainly dealing 

with the generality or universality of the model.  In general, the k-£ 

model has achieved a level of predictability which mixing length or one- 

equation turbulence models could not. In order to advance the 

predictability of turbulent flow motion further improvement in 

turbulence modelling must be made.  This motivates the present 

investigation. 

1.3  Scope of the Present Work 

In this investigation, a fundamental change in turbulence modelling 

is made, that is, to introduce the two scale concept, one based on (k,E) 

scale and the other (z ,\>)   scale. In the present investigation, k and z 
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are used to scale the turbulent phenomenon dominated by large scale 

motion such as diffusion term while the physical process associated with 

the dissipation of turbulent kinetic energy is modelled using e and v as 

the basic parameters, which is known as Kolmogorov scale. The Kolmogorov 

scale which is known since 1925 is more closely related to small eddy 

motion and has not been incorporated in the turbulence modelling so far. 

However, in the present investigation, this scale is used.  The new 

turbulence model based on both (k,e) and (£,v) scale is called the two- 

scale turbulence model. 

In Chapter II, a description of the physics of turbulence and the 

theory behind the use of the two-scale model is given. Then, the 

detailed derivation of the two-scale turbulence model is shown. Chapter 

III gives the governing equations for buoyant flows. Chapter IV contains 

a review and collection of experimental data for free shear flows. In 

Chapters V and VI the prediction of several free shear flows is shown. 

Chapter VII shows the calculations for separated flows. Finally, chapter 

VIII contains several important observations about the model and 

possible areas of further work regarding multiple scale modelling. 
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CHAPTER II 

TWO-SCALE SECOND ORDER TURBULENCE 
MODEL FOR INCOMPRESSIBLE FLOWS 

This chapter gives a detailed derivation of the two-scale k-E model 

for incompressible turbulent flows.  The complete set of governing 

equations are presented which are then modelled based on a set of 

turbulent postulations. 

2.1 Governing equations 

The governing equations for incompressible turbulent flow are the 

averaged Navier-Stokes equations, namely, the continuity equation, the 

momentum equation and the energy equation. They are also known as the 

Reynolds equations since it was Reynolds [1] who first used the 

averaging technique. For a short time or ensemble average, the average 

value of an instantaneous quantity (J at a time t can be defined as 

1 ^ * 
0 = ^ I ^ (t,n) 

n=l 

where n denotes the n  measurement of a total of N experiments.  In 

cartesian tensor notations, the continuity equation is 

au, , 

1 
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The momentum equation is 

DU. „    3T. .   3T. .^  -    ■ 

Dt    ^ i   3x.   3x.    3x. ^^•'^^ 
1    J     J     ■ 

where x.. and x..  are the laminar and turbulent stresses, G. is the 
ij     ij 1 

body force and P is the pressure. The stresses x.. and x..  are ziven bv 

the relations 

3U.   3U, 
1 

t  - V^[TZ~  "•" T^]     and T . . = -pu.u. 9x.   3x.        11   ^ 1 1 
J    1 -"       -^ 

The term -pu.u , known as Reynolds stress, is a result of averaging the 

convective acceleration. It is generally regarded as a turbulent stress 

in analogy with viscous stress, and is unknown. The energy equation, 

which too has additional unknown quantities, is given by 

^„  ^  aU.   9q.   3q^ 
DT _ X..  1   ^1   ^1 , ^ 

P^D^ - ^^377 ■ 33r ■ 3^ ^ * (2.3) 
J    1    1 

where the laminar heat flux q. and the turbulent heat flux q.  are given 

by the relations 

,3T 
q. - -Ivr— and q. = -pcu.9 1    3x.      11 

1 

0 is the viscous dissipation due to the velocity fluctuation and is 

expressed as 



u 

3u,   3u. 9u, 

3x.   3x. 3x. 
.     ,  J     1  J 

In the above five equations there are fifteen unknowns, namely, U., P, 

T, U.U., u 9 and <ft.     Hence, it is necessary to obtain equations for 

u.u., u.B and 0 to complete the turbulence closure problem. 

Equations for fluctuating velocity, u., and fluctuating 

temperature,9, are obtained by subtracting the above averaged equations 

from the original Navier-Stokes equations. This gives the momenr'om 

equation denoted by (m.) for the fluctuating velocity component, u., 

Du.     au.     3u.   3u.u,    , ,     a^u. 
 1 ,    1 ,    1   xi 1 3p  ,    1 ,  . ,  , 
DT ^^ 3^-^^i 3^ - a^= - p^ + ^37^ (m,)(2.4) 

and the energy equation denoted by (9) for fluctuating temperature, 9, 

D9 _^   3T ^   39   ^^l^ 3^9   ^ (0* - 0) ,„ , 

D^^-£33^^^ 3^- 3;^ = °'3V^*^V^ .   ^''^'-'^ 

where 

3u.    3u.   3u. 3U.    3u.   3u. 3u. 

From equation (2.4), the equation for u.u. is obtained using the 

relation [(m,)u. + (m . )u.].  This results in 
1 J   J  1 
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Du.u   g        an-TT. 
nT  ~ a:r~["^-^-Ui " ^(6..u. + 6.,u.) + v—^^-^1 Dt    3x^  1 j 1  p ij 1  ii j^  ''ax  J 

 3U       3U.     du.au.   5u- 3u— 

1 I3x   j i3x J  ^''ax.ax,  p^3x.  ax.-* ^^-^^ 
■'■      J-     1 1  '^  J   1 

In the above equation, the first term on the right hand side represents 

both the molecular and turbulent diffusion of the stress u~u  The next 
1 j 

term is the product of the Reynolds stress and the strain rate which 

represents the interaction between fluctuating component and mean flow. 

It is often called the production. The third term is the dissipation. 

The last term in this equation represents the correlation between 

pressure and fluctuating velocity gradients. It is also called the 

pressure-strain term or the redistribution term. The above equation can 

be contracted to get the equation for turbulent kinetic energy k or 

u~u:/2 by summing i=j and dividing it by 2. This gives with s = 

v[Ou./ax^)Cau^/3Xj^)] 

Dt  3x/ \^     2    %) -^ ^al^^ ■ W  i^ - ^ (2.7) 

where the term on the left side represents the time rate change of 

turbulent kinetic energy following the mean convection U .  The first 
i 

term on the right side is the diffusion of k. The second and third terms 

are the production and dissipation of the turbulent kinetic energy.  The 

dissipation term, e, represents the rate of dissipation of turbulent 

kinetic energy and is an unknown in the above equation.  It should be 



remarked that the dissipation term t   appears naturally in the k- 

equation. The variation of z   in the flow field has an important bearing 

of the distribution of the turbulent kinetic energy. Thus e is an 

important turbulent transport property.  The differential equation for e 

is derived from the (m.) equation by using the relation 

2v[3(m^)/3x^][3u^/3x^]. This gives 

Dz       3  ^    '\'\       275!!I.  3s ,       , aU  au au   .ulT 
— =   -vu   -   + V)— I - ^\>—r  -(- —— ^1 
Dt   3x/   £ax.3x.    p3x.3x.   "^SxJ   " 3x. ^ ax. 3x.   3x„ 3x J 

3Tr3^U.      Su.Su.3u.      Fu   ^ 

It should be noted that although the above equation is exact but every 

term on the right side other than the viscous diffusion vCas/ax..), is an 

additional unknown quantity.  The first term on the right side is the 

diffusion of e while the second and third terms represent the production 

of E. The last two terms are often called the destruction of e.  The 

modelling of these terms will be done in the next section. 

Finally, the u.9-equation is obtained from equations (2.4) and (2.5) 

by using the relation [9(m.)+u.(8)] which results in 

W- - aT-f-Vi^ - hi-p ^ °^aZ * ^-ITj 

 3T  3U      au.ae  —^    
-(u.u,— + U-ST-^) - (a-hj)-^— + £££ + i 0'u               (-2.9) 

1 tax, I  ax/ ax.3x„  p3x. pc^ 1          ^  -^ 
I               I 111. 

where 
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3u,     3u.   3u. 3U.     3u.   3u  3u 

ij 3x   ^^3x,   SxJSx.   ^hx.        SxJsx. 
J      J    1  J      j    1  j 

In this equation, the terms on the right side are diffusion of uT. the 
i 

production of u~T, the dissipation, the pressure-temperature correlation 

and the frictional heating terms respectively.  The unknown 0'u. in the 

u^9-equation represents the frictional -heating generated by the 

fluctuating component and is usually considered to be smaller than the 

frictional heating generated by the mean flow motion t  OU /3x ) 

Hence, it is often omitted in the mean energy equation. It should also 

be noted here that a part of the mean energy equation (1.6) y[3u./3x. + 

3u^/3x^][3u^/3x ] is equal to E which is derived in equation (2.8). 

The four transport equations (2.6) to (2.8) derived above have 

several unknown terms on the right side most of which need to be 

modelled.  This is discussed in the following section. 

2.2 Concept of Two Turbulent Scales 

Before attempting to model these equations, a brief discussion of 

turbulent flow structure is done and the concept of the two turbulent 

scales is introduced.  In order to visualize the existence of two 

significantly different turbulent scales in a turbulent flow, it is 

instructive to consider a turbulent correlation function R  (x-rl for 
ij 

velocity fluctuation, which is defined as 

R^ (x;r) = u^(x) u.(x+r) 
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where u.(x) is the instantaneous value of the i  component of the 

fluctuating velocity at the point of the position vector x and u.(x+r) 

the j   component of the fluctuating velocity at (x+r). The average, 

with a bar over u.u. may be considered either a time average or an 

ensemble average.  If r=0 and i=j, the one point correlation R..(x,Oj is 

the Reynolds normal stress in the i  direction.  The correlation 

R..(x,0) includes all possible turbulent eddy sizes at the position x. 

It is difficult to differentiate the scale that is significant in 

carrying out a turbulent process. One way to examine the behaviour of 

each turbulent eddy is to consider a spectral analysis of the 

correlation R..(x,0), i.e. 
ij 

= ^b'l *ij(k) = (|^)  R^j(x;r) exp(-ik.r) dr 

where (k.r) is the wave number vector, k dot the position vector at r 

distance from x. The wave number vector may be written as 

k = k i + k j + k k X    y'   z 

The component wavenumber, k., is related to the fluctuating frequency n. 

and the wavelength \. of an eddy in the x. direction by 

.   2Trn. 
,    2iT _  1 

i ~ X.   U.   . 

In fact 0. . (k) is the Fourier transformation of R..(x;r). The inverse 

Fourier transformation for recovering R..(xfr) thus becomes 
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R  (x;T) =U..{k)   exp(ik.7) dk 

The reason for examining the spectral distribution 0.. is that the 

transform is simply a method of representing the complex random wave 

form of turbulent eddy motion associated with R.. by what is equivalent 

to a sum of sine or cosine waves of various amplitude or frequencies. 

The total sum of all sine and cosine waves is equivalent to the original 

wave form of R  (x;'r) . Thus, one may think of 0 . . (k) as a fluctuating 
J -*-J 

intensity of R..(x;r) at a wave number, k., or frequency n . If the 

fluctuating intensity is large at a particular range of wave numbers, it 

means that the physical process of the turbulent phenomenon is 

intimately related to this range of wave number. 

For the present analysis, the energy spectrum of a steady isotropic 

flow behind a wind tunnel grid at r=0 is considered. Then 

Rij(x;0) = (0,^(k)dt 

The energy spectral 0..(k) is a function of the wave vector k or of a 

given point at k in wave space.  An integrated energy spectrum E..(k) 

which is a function of a scalar variable k can be obtained by 

integrating the energy spectrum *..(k) over a spherical surface of 

radius k=|k| or 

E^ (k) = J0..(k)ds(k) 
s -^ 
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Here, ds(k) is an element on the surface of the sphere of radius k. 

E..(k) thus may be taken as the energy contribution from the eddy size 

with wave number k to the u.u. correlation. The energy spectriim function 

of turbulent kinetic energy in the wave space is 

E(k) = |E..(k) 

The total kinetic energy of the turbulent flow is then 

aO 

2^ii = -¥=J!^^)^^ 

In particular, for isotropic flow the relation is 

I E(k)dk = |u^ 
The spectrum equation of turbulent kinetic energy equation for isotropic 

turbulence can be written [12] as 

ipi = T(k) - D(k) 

where T(k) is associated with the transfer of energy between wave 

numbers or eddy sizes. Its integral over all wave numbers is zero. It 

can thus be defined by a different transfer function 

-L S(k) = - I T(k)dk 
'O 
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which is the total energy transferee! from eddies in the range from 0 to 

k to those in the range greater than k. In other words, S(k) is the flux 

of turbulent kinetic energy from a spherical volume of radius equal to 

wave number k.  D(k) is the rate of dissipation of turbulent kinetic 

energy at the wave number k and is equal to 

D(k) = 2vk^E(k) 

Figure 2.1 shows the schematic energy spectrum E(k,t) and the 

dissipation spectrum D(k,t) for an isoptropic flow. The solid line shows 

a typical energy spectrum and the dashed line the dissipation of 

turbulent kinetic energy.  Figure 2.2 gives the measured energy spectrum 

and the dissipation [ 12-14 ] in log-log scale for a steady flow behind 

a square grid screen with spacing of M in a wind tunnel.  Here, the 

dimensionless wavenumber k is defined as 2T:nTi/U with n the frequency of 

a fluctuating component in turbulent flow, U the mean flow velocity and 

n is the Kolmogorov length scale or (vVe)*.  t is a dimensionless time 

or the real time normalized by a characteristic time M/U. In figure 2.2, 

the Reynolds number Re^ is UX /v where X is Taylor's microscale [12]. 
6 g 

The wavenumber, k, may be considered to be inversely proportional to the 

size of the eddies. In other words, the larger the size of the eddy, the 

smaller is its wavenumber.  From figure 2.2, it can be seen that the 

measured energy and dissipation spectra are quite different and can be 

associated with different wavenumbers. For instance, a wavenumber 

characterized by k^, in the order of lo"^ at Reynolds number Re. of 540 
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may be considered to be associated with the size of the small eddies 

that provide the main contribution to the dissipation of turbulent 

kinetic energy.  This value k roughly corresponds to the maximum value 

of the dissipation curve.  Similarly, there is a range of spectrum which 

corresponds to the energy containing large eddies. A wavenumber 

-4 
characterized by k , in the order of 10   at Re, of 540 may be 

considered to associate with this range which corresponds to the peak of 

the energy curve. 

It has been shown both experimentally by Frieche et al. [13] and 

theoretically by Driscoll and Kennedy [14] that these energy and 

dissipation spectra change with Reynolds number.  As given in figure 

2.2, an increase in the Reynolds number causes the peaks of the energy 

and dissipation curves to separate further away. 

In most of the spectral analysis, a turbulent Reynolds number is 

associated with the wavenumber, k . It has been shown [121 that 
e 

7— = I    = TrRe.X 
k    e   15  X g 

where A is a constant and i    is the length of the eddy corresponding to 

the wavenumber, k .  Re, is the Reynolds number based on Taylor 

microscale, X or UX /v.  The Taylor microscale is a length scale 

associated with the curvature of the spatial velocity autocorrelations 

[15] and is related to the dissipation e by the expression [12] 

- 1- ^" t  -  l.v^ 
S 
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where u' is a velocity fluctuation. 

Driscoll and Kennedy [14] obtained the energy and dissipation spectra 

for Re^ ranging from 13 to 540 as shown in figure 2.2 The dimensionless 

wavenumber, k, is defined as 2irmi/U where T\   is the Kolmogorov length 

scale or (VVE) •  The energy spectra shows that when Re. increases k TI 
A e 

decreases.  For a value of Re,=13, the peak wave number k is about 0.01 
*■ e 

whereas for Re^=540, it is 0.0001.  Hence, it can be said that the 

structure of turbulence is dependent on Reynolds number, whether it is 

the turbulent Reynolds number or the mean Reynolds number. 

The quantity E(k) '[12], used in Figures 2.1 and 2.2, is defined as 

E(k) = 2Trk^E..(k) 

where Ej^^(k) is the Fourier Transformation of the correlation tensor 

u.u. or 
1 1 

11 = 4)'{v"i E  (k) = (—) I uTu.expC-ik.r) dr 

Thus, the total energy contained by all the eddies is 1.5u^,i.e. 

E(k)dk = |u^ 

Therefore, figure 2.1 shows, conceptually, two distinguishing features 

of turbulence when one examines the turbulent spectra or turbulent 

eddies. The solid line gives the energy spectra from which it can be 
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seen that the range of eddies containing most of the energy are large in 

size (or lower in wavenuraber range) and is comparable to the width of 

the flow.  They transfer their energy to smaller eddies.  It is in this 

range of smaller eddies where most of the dissipation of turbulent 

energy occurs.  The larger the Reynolds number, the smaller is the eddy 

size.  These properties of turbulent flows are obtained by experimental 

measurements and not by any postulation. Hence, it seems natural to 

consider different scales for the modelling of the k and z   equations 

(2.7) and (2.8).  The measurements of Frieche et al.  [13] reveal that 

large eddies possess most of the turbulent kinetic energy in the flow 

and do not play any significant role in the dissipation of turbulent 

kinetic energy. On the other hand, Kolmogorov [12] found that small eddy 

characteristics are functions of (e,v).  In the medium range of eddy 

size, a process described as the transfer function T(k,t) derived from 

convection terms of the k-equation (2.7) provides a mechanism to 

transfer the turbulent kinetic energy possessed by large eddies to small 

eddies before it is consumed by the viscous dissipation and turned into 

thermal energy. This distinct difference in the behavior of turbulence 

at different wave number was known for sometime. However, it has not yet 

been incorporated in most of the turbulence models.  The existing models 

characterize the velocity, length and time scales for turbulent flows 

based on k and e. However, in any turbulent flow, it is the larger 

eddies which cascade to become smaller eddies through inertial 

interaction, thereby transferring energy to the smaller eddies. At the 

same time, viscosity effects and, with them, dissipation become more and 
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more important for the smaller eddies as shown in figure 2.1. For a 

certain range of these small eddies, it can be shown that turbulence is 

in statistical equilibrium. This is the range in which viscosity can be 

effective in smoothing out velocity fluctuations. The generation of 

these small scale fluctuations is made possible due to the nonlinear 

terms in the equations of motion. On the other hand the viscous action 

prevents the generation of infinitely small scales of fluctuating motion 

by dissipating turbulent kinetic energy into heat. One may consider that 

at large Reynolds numbers, the relative magnitude of viscous force 

compared to inertia force is so small that viscous effects in a flow 

tend to become vanishingly small. However, Townsend [15] reasoned that 

the nonlinear terms in the Navier-Stokes equations counteract this 

effect by generating motion at scales small enough to be affected by 

viscosity.  In other words, as soon as the scale of the flow field 

becomes so large that viscosity effects could be neglected, the flow 

creates small scale motion thereby keeping viscosity effects and, in 

particular, dissipation rates at a finite level. 

At these small scales, turbulent motions are statistically 

independent of the relatively slow large scale turbulence and of the 

mean flow. Hence, as Kolmogorov reasoned, the character of turbulence in 

this range is determined by s, the rate of dissipation of k and the 

viscosity v.  These considerations led Kolmogorov to make the following 

hypothesis: 
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At suffficiently high Reynolds numbers there is a range of high wave 

number where the turbulence is statistically in equilibrium and uniquely 

determined by the parameters £ and v.  This state of equilibrium is 

universal'.      ,. 

Using these two parameters, e and v, velocity, length and time scales 

for small eddy motion can be characterized by ' . 

V = (ve)^;  n = (vVe)^  and t H n/v = (v/e)^ 

which can be obtained by dimensional analysis of v and z.     On the other 

hand, in the large turbulent eddies, the turbulent kinetic energy, k, is 

important since these large eddies are responsible for carrying 

turbulent energy and extract energy from the flow motion to sustain 

turbulence. Therefore, the character of turbulence in the large eddy 

range is determined by E, the rate of dissipation of k, and the 

turbulent kinetic energy, k, itself. Using these two parameters, e and 

k, the velocity, length and time scales for large eddy motion can be 

characterized as 

u = k*; i =  k^'Ve and t s l/u  = k/e 

Though the above analysis was done for isotropic flow, which is not -. 

the case in many practical situations, it has been shown [12] 

experimentally that the fine structure of nonisotropic turbulent flows 

is almost isotropic (local isotropy). This is, however, not true for all 

experimental results. Nevertheless, many qualitative features of 
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isotropic turbulence, particularly the distribution of two turbulence 

scales, apply to phenomena in actual turbulence. Measurements of 

Kolmogorov fine-scale turbulence structure in various flows shows that 

differences between results are often sufficiently small to be 

negligible in the first approximation. 

Several investigators [16,17] have mentioned in the past that it is 

the £-equation [equation (2.8)] which needs to be carefully studied. 

This is because of the complexity and difficulty in modelling the £- 

equation.  The physical meaning of the different correlations among all 

sizes of eddies and fluctuating quantities is sometimes difficult to 

understand.  As an example, the production term containing the second 

derivative of the mean velocity U in equation (2.8) for e is neglected 

invariably by most investigators. The reason for this is that this term 

is asstimed to be much smaller than some of the other terms in this 

equation. However, the physical significance of this term is still not 

clear.  Therefore, due to lack of information about such terms the e- 

equation needs to be further investigated in order to improve the 

accuracy and prediction capability of the model as well as making it 

more general. 

The concept of using different time scales was first proposed by 

Lumley [17] in 1975. He suggested that each term in both the k and t 

equations be modelled either by using the (k,e) scales or the (k,£,v) 

scales.  However, in the final form of the modelled £-equation suggested 

by Lumley, the scale containing v was neglected. Another approach 
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considering multiple scales was made by Hanjalic et. al [16]. They used 

two different time scales by dividing the whole energy spectrum into two 

parts -- the energy containing eddies and the dissipating eddies. For 

each region, a separate time scale is used to model the k cind s 

equations. Results were obtained for several thin shear flows which show 

an improvement in the level of agreement with experiments over that 

obtained with models employing only one time scale. The authors 

suggested that by dividing the spectrum into more number of parts and 

solving the two equations in each region, a further improvement in the 

result could be obtained though the computational time would 

considerably increase.  However, the authors did not present the 

results. 

In the present investigation of turbulence modelling, the two-scale 

concept is employed. The two scales are the large eddy or energy 

containing scale based on k and e and the small eddy or energy 

dissipating scale based on v and s.  The two-scale concept is applied to 

all turbulent transport equations whenever it applies. 

2.3 Turbulence modelling 

Before modelling the transport equations, the postulations of 

turbulent flow are listed below.  These postulations are made by various 

models and summarized by Chen [18]. 

1.  Navier-Stokes equations are valid in describing turbulent motion. 
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2. Turbulent diffusion of a turbulent transport quantity (u.u., k, 

E, u.8) is proportional to its gradient. 

3. Small eddies are isotropic. 

4. All turbulent quantities are functions of u.u., k, e, u.9, U , P, 
1 j       1 '  i'  ' 

T, p , V and a. 

5. The model equations should be consistent with respect to 

symmetry, invariance, permutation and physical conservation laws 

imposed on the original equations. 

6. Turbulent scales are functions of k, E and v.  Large eddy scales 

j. 
based on (k,E) are [u] = k^, [1] = k^'^/z,   [t]   = k/s and small 

eddy scale based on (v,e) are [u] = (ve)_ ' ^^^  ~  ^^  ^^^   '   ^^^ ~ 

(V/E)*. 

7. Turbulent constants in the model are determined from experiments. 

The two-scale turbulent flow model is now derived in the following 

section. Both (k,s) and (v,s) scales are used in the modelling of the E- 

equation. As for the modelling of the u.u. and k equations, the large 

eddy scale (k,e) is used for the reason that the large eddies which 

contain most of the turbulent kinetic energy are also responsible for 

turbulent diffusion and pressure-strain interaction. Further details 

are presented below. 

2.3.1 Modelling of u.u. and k equations 

The turbulent diffusion term of equation (2.6) is modelled based on 

postulate 2 that the diffusion of u.u. is proportional to its gradient 

or 



'^MUU- 

 p       ,2   3u u 
- u.u.u + -(6.,u. + 6..U.) = C, [ —]r-^-^ 

In order to keep the dimensions consistent, a quantity with a scale of 

[1^/t] is needed to complete the model.  From dimensional analysis based 

on large eddy scale (k,E), it follows that 

[u] = k^; [i]   = k'-'/t;   [t] = k/e;  [iiVt] = k^/t 

The (k,e) scale is chosen here instead of the small eddy scale (V.E) 

based on the physical ground that diffusion of any quantity by turbulent 

fluctuation is largely controlled by large eddy motion.  Thus 

 P "       k^ ^^i'^i 
- U.U.U-+ -(5..U. + 6.,u.) = C, — , ^ ■' 

Here, C^ is a proportionality coefficient.  It should be remarked here 

that the model observes the symmetry of the original form between i and 

j as stated in postulate 5.  The dissipation term in equation (2.6) is 

modelled based on postulate 3 as 

3u. 3u.  „   3u5u" 
o,, 1  1 _ 2f.       m  m _ 2- 
^^x^ 3x^ - 3^ij^3^ i^ - 3^ij^ 

This is based on the understanding that the larger the Reynolds number 

the smaller the turbulent eddies are and that the smaller these eddies 

become the more isotropic they will be.  Thus, the dissipation of 

turbulent stress u.u. by the small eddies is mainly in the isotropic 
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range.  It should be noted here that under postulate 3 and the model 

presented, the dissipation of u.u. can occur only in the normal stress 

u.u  for i=j and not the shear stress when irj However, when i=j the 

model term reduces to the exact expression. 

The pressure-strain term is modelled based on postulates 4 and 5 as 

where C  and C  are model coefficients determined from experiments and 

  3U.   au. atj 
p.. = - (u u. -r-r^ + u.u^ -r-i)  and P, = -'vTa    T-^ 
ij      1 1 3x-   j 1 ax/ ■     k     n m ax 

i. 1 ID 

Further details of the modelling of u.u. equation can be found in 

[18,19].  The modelled u.u. equation, thus, has the form 

Du.u.   .     , 2 au.u.   auTu.        „ 

Dt    ax/^k z   ax^  "^^axj^ ^  ^j  s^ij" 

.   -^iffV^ -f^j^l -^zf^j -¥iA^ (2.10) 

From this equation, the k-equation is obtained by summing i=j for 

i=l,2,3 and dividing the result by two. This gives 

Dk _ a .„ k=^ak ^ ak .    ^^i 
Dt - a^^Sl a^^^i^l - V£ a3^ - ^ (2.11) 



It should be remembered here that in equation (2.11), where i=j, the 

pressure-strain term (p/p)[3u./3x. + 3u./3x-] is identically equal to 

zero due to incompressibility requirement.  Therefore, in equation 

(2.11), only the first term on the right hand side is modelled and the 

rest of the equation is exact as derived in equation (2.7).  It shou^i 

also be noted that equation (2.11) portrays the interaction of all 

turbulent eddies. The last term in equation (2.11), z,   is dominantly 

associated with the small eddies and is responsible for dissipation of 

turbulent energy that is produced, first, by -u.u.(3U./8x ) through the 

stress exerted by the fluctuating motion on the mean flow motion and 

secondly, by turbulent and viscous diffusion shown in the first term on 

the right side.  The diffusion term can be reasoned to be more 

intimately correlated with the large eddy motion. This is why the length 

and time scale of large eddies [1] = k^"'/s and [t] = k/c is adopted in 

modelling the diffusion term. Although two scale concept is evident in 

the k-equation, there is no need to invoke the second and small scale 

(s,v) in this equation as the last term, e, is exact. The situation, 

however, is different when one attempts to model the s-equation. This is 

considered in the following section. 

2.3.2 Modelling of e-equation 

The modelling of E-equation is important because it governs the way 

in which the turbulent kinetic energy is dissipated.  As mentioned 

earlier, the performance of the modelled e-equation based on a single 

turbulent scale of large eddies is not as satisfactory as the other 
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modelled equations. First, the model constant, C which appears in the 

equation for eddy viscosity and C^  which appears in the e-equation, 

are found not to be constants. Secondly, the prediction of turbulent 

flow is quite sensitive to the values of the constants C  and C  . 
el     e2 

In modelling the s-equation, equation (2.8), it should also be 

remarked that all eddy motions contribute in the equation.  The 

dissipative  action is dominant at the small eddy level while the 

convective and diffusive actions are predominant at the large eddy 

level. 

The scale at which the small eddy is manifesting its dissipating 

function in a given flow, is intimately related to the large scale 

structure and the ratio of inertia force and viscous force or the 

Reynolds number as already discussed in section 2.2.  The effect of 

large scale motion on the small eddy scale is transmitted through the 

transfer mechanism created by the nonlinear term of the transport 

equation.  Each term in the s-equation contributes differently in a 

different range of eddy size.  Thus, it is important to model each term 

in e-equation individually according to the eddy size that characterizes 

the physical process of the term.  Proceeding in this way, the e- 

equation is modelled below. The first production term in equation (2.8) 

is modelled as 

3U. 3u„ 3u„   3u. 3u 

''3x.^3x. 3x.   3x„ 3xJ "" ° 
J   1  J     I       i 
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This is because, for i=j, the mean strain is zero from conservation of 

mass for incompressible flow and for i^j, the quantity in the 

parenthesis is zero from the isotropic nature of small eddies at large 

Reynolds number which is mentioned in postulate 3. 

The second production term, 

au, 3^U. 
1   1 

vu 
H 3x. 3x„3x. 

J   i  J 

is also neglected, based on Lumley's [17] proposal that the correlation 

coefficients between two quantities, each from a different range, are of 

the order of the time scale ratio Re '. In this case, u, is considered 

to be in one range characterized by the large eddy scale and 3u./3x. in 

another range by the small eddy scale and consequently the value of 

correlation coefficient is considered small or weak compared with the 

other terms in the E-equation. For example, 

3u. 3u. 3u. 

3x. 3x^ 3x^ 

has a strong correlation as the terms au./3x., 3u./3x.. and 3u./9x^ are 

in the same range.  Therefore, 

3u. 3u. 3u. JuT 3^U. 
2v:r^ _i _-L  >  2vu   ^   " 

3x. 3x. 3x- I  3x. 3x„3x. 

So the second production term is dropped from the E-equation. 
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The modelling of the two destruction terms is done based on postulate 

4 that they are function of the quantity P, fz   and other transport 
K 

variables in accordance with Lumley's argument [17].  Here, P [= 

-u^Uj(aU^/3x )] is the production of turbulent kinetic energy. Thus 

3u. 3u. au.     Fu   *~    P 

Lumley assumed that these two terms should vanish when the turbulent 

flow approaches equilibrium. Thus, for small deviations from turbulent 

equilibrium, this function may be approximately expanded to obtain 

Here [e/t] is the dimension needed so that the overall dimension of the 

£-equation and that of the two destructive terms are consistent, t is 

the time scale that characterizes the physical action for destruction of 

e.  Since the dissipation or destruction of z  physically is dominated in 

the small eddy range, the time scale, t=(v/£)^, based on Kolmogorov 

hjrpothesis, is used in the present work.  Hence, the modelled 

destruction term is 

This model differs from the existing turbulence model [19] in that the 

Kolmogorov scale (e,v) is used for the scaling of time [t] instead of 



the conventional scale based on Ck,£) which leads to the conventional £- 

equation given in equation (1.10). 

The diffusion term in £-equation is modelled according to postulate 2 

that it is proportional to the gradient of E, or 

. -p^   .  2v !^ 3P_ ^   11 3£_ ^ c ^ li- 
i   p 3x. ax.    E^t ^3x.    E E  3x. 

J   J J J  ,   . .    . ^     ^ 

Here the length and time scales are modelled based on the large eddy or 

a = k^'Ve and t = k/e 

as shown before.  Thus the modelled £-equation based on the two-scale 

concept and Lumley's suggestion for destruction term is 

Dt = hrl". IS- * "H-l - ".i^^M^^i JT. ■ <:,a(=/v)i.     C2.12) 

Here C , C , and C   are model proportionality coefficients.  In 

general, they can be a function of fluid or flow properties such as 

Prandtl number or Reynolds number. 

2.3.3 Modelling of u.8-equation 

Finally the modelling of the u.8-equation [equation (2.9)] is done to 

complete the turbulence closure problem. Using the same postulates as 

those for modelling the u.u. equation, the diffusion term of this 

equation is modelled as 
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        —B-     , 2^^ .8 

,   2.   I li    p T £ 3x 

and for a = v, 

au 
-rr- 3u.    3uT5" 
r— + v8-— = a-; 

i 3x^    3x^    3x^ 

The dissipation rerm vanishes due to the assumption of isotropic nature 

of small eddies or postulate 3, i.e., 

- (a + V)T^ I^ = 0 
3x, 3x„ 

The pressure strain term (P-9) is modelled according to Launder [20] as 

P 39 3U. 

; 3^ = - ^Tl kV ^ ^TzVsT 
1 m 

The frictional term in u a-equation is neglected as it is an order of 

magnitude smaller than the other terms. Hence the modelled "uT-equation 

takes the form 

Dt  - 3x/^T I ^  ^ -J^^   -   ^^i\  ^ + ^^9^] 

       3U..^  

■ Si kV ^ S2 i^-m^ (2.13) 
m 

Again, C^, C  and C  are model coefficients. 
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Summarizing the two-scale second order turbulence model, we have the 

following equations ■;-,•     ^\'U^'' • 

3U. 

1 

DU. _ 3T..       3T     ^ 

(2.1) 

P^ =       G     - -^ + ^^ + -^ f2  2^ 
Dt P   i       ax.        3x. 3x. ^"^-"^^ 

HT         .       9U. 3q. 3q^                                                 .,.    ,-,r:^',-    ■. .-n.r 
DT       T..      1 ^1 1   ,    , 

p^Di= ^Ja^T ■ ^ ■ ir:^ *                               ^2.3) 
j 1 1 

Du.u.        - , 2   3u.u. 3u.u. 
1  j       3 r_    k^       1  j   , 1  j,       „ 2. 

DT-' = a^fS r 3^ ^ -i^^ - ^j    3^jr^^,     . 

-  ^1 b^j   - f^j^^   -  ^2f^j   ■ ¥i:\^      "    \^'   -'^ ^  '   " C2.10) 

Dk _ a    _   k^ak   ^   ak ,        ^"i ^^"^ 

III I 

¥t = fc-[^s 1% - -1^1 - ^.ic^/-)*v^ 5 - ^e2^^/-)^^, !r;, (^-^^^ 

^_3     .^    k^^^^^     '^^ —    3T    ^'""i^               ,               r-.     : Dt.     -  33^tC^ 7 ^ + a—] -   [u .u^ — + irp—]       ^ ^^ ^  ..   ,   ^^   . ,^ _ 

■ ^Ti k^^ ^ ^T2 3^%^ :• -^'^ ■■■ -V l:i}:^ ^ :;i .  (2.13) 
m ■■-:■;        . ,   V;' vi   I ,::     .       -   ■ 
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2.4  Determination of Turbulent Coefficients 

The above 11 equations for turbulent quantities have 9 dimensionless 

coefficients or constants, namely, C^, C^, C^, C^, C^^, C^^' ^x' ^Tl ^^"^ 

^T2 ^° ^^  determined from experiments. The determination of the value of 

turbulent coefficients in principle is similar to the one for laminar 

flow where an experiment has to be performed to obtain the values of 

viscosity and thermal diffusivity of the fluid. The laminar coefficients 

which are dimensional such as kinematic viscosity v and thermal 

diffusivity a turned out to be dependent on fluid and thermodynamic 

variables, temperature T and pressure P. The turbulent coefficients are 

dimensionless and can, in general, be functions of fluid and flow 

properties such as Prandlt number or Reynolds number.  If the turbulent 

flow equations are properly modelled, the model coefficients should 

remain universal and can be evaluated once for all from the chosen 

experiments. Thus, the process of determining the constants is not a 

case of experimental data fitting. It should be remarked that although 

these coefficients may depend on fluid properties like laminar flow 

coefficients v and a, they are determined mainly from experiments 

performed in air and water. Many investigators consider that these 

coefficients remain the same for both fluids.  Whether these 

coefficients are valid for turbulent flows in other fluids such as oil 

or liquid metal is not known.  The following subsections highlight the 

method of obtaining these constants. 



^^ 

2.4.1 C , and C ^ 
si     E2 

The coefficients C  and C  are obtained from experimental data of 

homogeneous shear flow and turbulence behind a grid [21].  Consider a 

uniform flow of velocity U passing a square grid with spacing M. Tb" 

flow behind the grid can be made isotropic by contracting the area of 

cross section by a factor of 1.27.  The k and E equations for isotropic 

turbulent flow behind a grid (figure 2.3) are 

U T^ = -e 
o dx 

and 

U 7^ = -C -(E/V)*S 
o dx    e2 

Here x is the coordinate along the flow direction.  It should be 

remarked here that the diffusion terms of k and E equations in their 

exact form are zero for isotropic flow.  Nondimensionalizing these 

equations using the variables 

M' ^  iT^' ^ " IHTM' ^® ~ V 
o       . o 

the following equations are obtained, i.e., 

dk' 
dx' ■ "' 
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dx     £2 

From figure 2.4, the relation between k and x is found to be 

approximately for air [18] 

40000 

between 10 < x/M < 200 for the approximately isotropic range and for Re 

3     4 
ranging from 10 to 10 .  Substituting this in the k-equation gives a 

relation between z   and x, which is 

• =  ^ = ^50  ,-2 
^    ' dx'   40000^ 

This is now substituted in the e-equation to give 

.Ji50_  ,-3^ J    450 ....,-2 
40000 ^    ^    ^e2^^ ^40000''  ^ 

Hence, C_„ is calculated to be 

It should be mentioned that the flow behind uniform grid is not truly an 

isotropic flow since u^/v* is always greater than one. u*/v^ starts with 

about 1 immediately behind the screen for Re. > 10^ and increases to 

1.55 downstream [18]. Therefore, decay data for turbulent kinetic energy 

k' versus x' beyond x/M > 200 should not be considered as an isotropic 

data and used in determination of turbulent coefficients.  The value of 
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C  is next obtained from homogeneous shear flow as shown in figure 2.5 

For such a flow, the k and z   equations are 

0 = -uvr- - e 
8y 

and 

0 = -C^^iz/s,)^  uv|^ -C^2^e/v)*E 

Substituting the k-equation into the E-equation gives 

C^^(e/v)*s - C^^i;^/^)^^ = 0 

Therefore, 

C^^ = C^2 = 18.9 Re-* 

The diffusion terms in k and e equations are assumed to be approximately 

zero here. Strictly speaking they are nonzero. Consequently the 

determination of C  should be considered only an approximate one.  The 

coefficients C . and C „ for the destruction term in the e-equation were 

found to be function of Reynolds number based on a characteristic mean 

flow velocity U and a characteristic length M. The appearance of 

Reynolds number in C , and C „ reflects that the small eddies el     s2 

responsible for destruction for z   are indeed a function of mean Reynolds 

number.  In other words, the size of small eddy and the time scale that 

characterizes the destruction of z   changes when Reynolds number changes. 
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It should be remarked here that in the one-scale turbulence model the 

coefficients C  and C  in equation (1.10) are found to be independent 

of Reynolds number. Their values are not universal and require 

modification in some flow configurations such as between plane jet and 

round jet.  To compensate the contribution of diffusion C  in the 
El 

present study is taken to be approximately 17.5 Re"^.  The fact that C 
£ 1 

and Z       required modification weakens the predictability of the one 

scale turbulence model and motivates the present investigation of the 

two scale turbulence model to improve the predictability of the model. 

2.4.2 C^ and C  ' 

The constants C and C„ in equation (2.10) are obtained in a way 

similar to C^  and C   [18].  Experimental result of anisotropic 

turbulence behind a grid by Uberoi [21] are used. For such a flow, 

U=U^=constant and V=W=0. By passing this flow through a 4:1 contraction 

of flow cross-section area, the turbulence becomes strongly anisotropic. 

With U^= constant, the exact equation for u.u. [equation (2.6)] where "u*" 

> v^ = w* becomes 

U — = - 2v^ -^ I 2p 3u 

when i=j and the modelled equation is 

"of =-!=-=: |("-^) 
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Figure 2.3.  Isotropic flow behind a grid 
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X 

Figure 2.4.  k-distribution in an isotropic fl ow 
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Dividing the second term on RHS of each equation by the first term on 

the RHS gives 

C, |(u^ - fk) 

= -c.#- 1) 2 l'2k 

.    In order to accurately determine C one needs to avoid data of l.SC'iP/k) 

which is close to one since it will make the right hand side of the 

above expression zero. In other words, one should consider the data in 

I       the strongly anisotropic range, 1P/v'"> 1, or between x/M equal to 0 and 

40.  From figure 2.6, (■\P/TP')=1. 83 for x/M=25 where~t?=^.  Thus 

3^ "- ^ _  3v'/1.83  ^ 
2 k   \P(1/1.83 + 2)    ^ ^ 

From figure 2.7, at x/M =25, 

2P 3u 
p 3x 

= 1.0 
au au 

Hence 

3^ 

and 

C = 2.8 

If data at x/M = 12.5 is used, C = 2.88. 
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Figure  2.5.     Homogeneous  shear  fl ow 
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Figure 2.6.  Experimental data of Uberoi. 
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Next, C  is obtained from experimental data of homogeneous shear 

flow. Figure 2.5 shows the values of k, iF, v^ and w^ for such a flow. 

The modelled Reynolds stress equation (2.10) for IP" becomes 

0 . 0 - 2-,|^ - f. - C^ i(P - |., - C,(2 - |,^v|H 

The k-equation  (2.11)  becomes 

0 = 0- TIv|^  -  E ay 

From figure 2.5, at x/H=10, 

(p  - |k)/k =0.22 

Substituting the above value and' s in the IP equation gives 

4(1 - C2)/3C^ = 0.22 

For C^=2.8, C„ is found to be approximately 0.54.  The commonly used 

values of C and C are 2.3 and 0.4. 

2.4.3 Cj.^ and C.^.^ 

For these coefficients, the experimental data of homogeneous shear 

flow with a temperature gradient obtained by Webster [22] is used.  The 

modelled equation for u.8 is 
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D^ = i^f^T s 3I7- ^ "'^J - [-i^ i^ + ^9i^] 

g 3U.  

■ Si k^^ ^ ^T2 3^\^ -    ■ (2.13) 
m 

To determine C^^, i is set to 2.  For the homogeneous shear flow, this 

gives , 

0 = 0 -(P|I - 0) - c^^ i^ 

and the k-equation gives 

0=0- n^l^ - s 
ay 

Therefore, 

C  = - pis OT/9y) ^ 2 A_ OT/ay) 
Tl      e   vH    uv W (aU/ay) 

From experimental data of Webster as shown in figure 2.8 the magnitude 

of uv, v , k and v9 are found to be about 0.5, 1.9, 3.23. and 0.38, 

respectively.  These values are for Richardson number, Ri, of 0 as 

indicated by the dashed lines, which represent the averaged value of the 

experimental data.  Further, the ratio of the temperature gradient to 

the velocity gradient is obtained from experimental date to be 0.1. 

Substituting these values in the above relation, C  is calculated to be 

3.2.  Similarly, C   is found by letting i=l in the modelled u~5" 
^- i 

equation.  This gives 
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0 = 0 - i^g * ^f 1 - c^i i»-e * c^, Fef^ 

Again, from experimental data of figure 2.8, uB is 0.47 at Ri = 0. 

Hence, C^- is calculated to be 0.5. 

2.4.4 C, , C and C^ 

The coefficients C, , C and C_ are obtained by computer optimization to 

be 0.9, 2.00 and 0.13 respectively. Several investigators [18] have 

obtained these constants from experimental data of near wall turbulence. 

Their values are not used in the present model. Instead, the modified 

values that give best results are used.  However, once the values are 

determined they are kept constants for all calculations in the present 

study. 

2.5 Concluding remarks 

From the above discussion, the 9 turbulent coefficients or constants 

are determined to be as follows: 

Cj^=0.9;  C^=2.00;        C.j,=0.13 

C^=2.8;  C^^=17.5/(Re)^  0.^.^=3.2 

0^=0.4;  C^^=18.9/(Re)^;  0^2"°'^ 

where Re is the Reynolds number based on the problem characteristic 

velocity and length.  These coefficients are determined from different 

experiments. However, if the turbulence model is to have predictability. 
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Figure 2.8.  Experimental data for 
homogeneous shear flow (Webster) 



the coefficients should remain the same in other turbulent flows.  This 

will be examined in Chapter V. 

It should be remarked that Reynolds number appears in the turbulent 

coefficients for the two-scale turbulence model. This was not the ci-e 

for the one-scale turbulence model. The appearance of Reynolds number is 

expected since, as discussed in section 2.2, turbulent flows are still 

Reynolds number dependent and also because small scale (V,E) proposed by 

Kolmogorov for dissipation of turbulent kinetic energy contains 

kinematic viscosity.  Physically, this implies that Reynolds number 

changes the magnitude of the destruction of E and hence affect the 

magnitude of z  and range of eddy size that is responsible for the 

dissipating the kinetic energy. 
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CHAPTER III 

TWO SCALE K-Z-e"^ TURBULENCE MODEL FOR 
BUOYANT FREE SHEAR FLOWS :. 

Flow patterns in nature are complicated due to change in density 

caused either by a temperature or concentration difference. The force 

produced by this variation is called buoyancy force. In this chapter, 

the two-scale turbulence model derived in the previous chapter for 

incompressible flow is extended to include turbulent buoyant flows. 

3.1 Sous s inesq's approximat ion 
and governing equations 

For flows where the density gradient is not large, the buoyant force 

can be incorporated into the governing equations by making the 

Boussinesq approximation. In this approximation [18], the density 

variation is considered significant only in the gravitational term. In 

other words, the effect of density difference in the conservation of 

mass, in the time rate change of momentum and in the work done due to 

density changes are considered negligible. 

The governing equations for such flows are ' 

3U.   . ■ , . 

.1 



DO.    3P"   ,.     3^U" 

1 J  J 

and 

•■■'■■■';    DT rr^ll"     ^ .* ' :.,-..■.:■?.;  . :.:,,, 
Ps^D^ = ^in^^* (3.3) 

J  J 

#  "' '"' ' ' ' ''  "■•■.■ 

0  is the heat source due to dissipation by viscous force.  c or c and 
P 

K are the specific heat and thermal conductivity. The superscript, -, 

represents an instantaneous quantity.  If P and p  at the static state 

(U. =0) are P  and p , then the momentum equation becomes , , ,, ,,, 

'f 
°' -JZ* "s^i * °     "- "•*' 

1 

Subtracting the two momentixm equations (3.2 and 3.4), we have 

With the Boussinesq approximation, the pressure and density relations 

are given by  ' ' " - 

P* = P* - P,;  (P* - PJ/P, = - e(T*- T ) = - BAT* 
u     a 5    S S 

* 
where P is the pressure above the static state and T is the absolute 

s 

temperature at the static state. B is the volumetric expansion 

coefficient or -l/BOp/3T)  evaluated at T , P .  The governing 

equations, therefore, become 
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* 

1 

1 

* 
3P 

■  SAT^g. 
3^0. 

1      ^,               ^ 
Dt           p 3x, '   '3x.3x. 

(3.6) 

(3.7) 
J  J 

and 

*   * 

DT ^ ^3^T   + lii _i 
Dt =^irir:^^ aT (3.8) 

J  J        J    . 

* 
T   is the instantaneous viscous stress and a is the thermal 

diffusivity or K/p c.  These equations are exactly the same as the 

equations for non-buoyant flows except that the momentum equation has an 

additional buoyancy term 3AT g.. Letting 

* * * * 
U  = U + u • P = P + p; T . .  = X . . + T . . ' ; T = T + 8 

and taking an ensemble average of these equations, the resulting 

equations obtained are 

3U. 

DU.     3P S^U. SiTu 
DT = -pFT ■ ^^^S> v^^^ - ^                (3.10) 

SI J  J J 

and 
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DT  a^T    alT^  T.. '3u. 

Dt  ax.ax.  ax.  p c ax.  □ c (->-ii) 

where 

3U.   au. 3U. 

^  '^^ax.  ax.^ax. 
J   1  J 

The term 

au. 

ij ax.  ^'^ 
J 

may be considered as frictional heating due to the fluctuating and mean 

flow motion. This is normally small in turbulent buoyant flows and can 

be omitted in most of buoyant flow studies.  The above equations have 

terms u u and u 9 which need to be modelled. The equations for ITTI , k. 
1 J     1 1 j'  ' 

e and u~5 are obtained in the same way as those in chapter II. The final 

form of these equations is 

Du.u        g                auTu. 

*• S X, 

.   3u.     3u. au. au.    —jiT—5ir~ 
-t^^a^ * -j-^i^T^^   -  2v^ + ^(3^ +  3^) (3.12) 

DT- = a^[-^^^ - 'izl; ^ -^i^ ^ ^ 3^^ ■ ^^i 

aT     3U. Su.SS 

■tViiS/ "t^a^J - (""-^'3^ * ^,* TZ*^i "-13) 
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Dk _   3      ^ /VTTi:,   .     3k   ,            3Ui       ^  __ 
*■ s Jt Jt 

Dt     axj^^"^^£3x 3x   ■ P 3x 3x   ^ ^3xJ ^ ^^ilTf^TTiT: "" alTsr- 

5u:3*U. au Ju.Su. Fir ^ ~3u—JF 
.2vu —i i 2v     ^     ^    'I   -  2fv ^^1   -  ?6a V—i   (3.15) 
^^^ax^3x^3x.        ^^3x.3x^3x^ ^^i^^J ^^^j   ^^" 

where 

   3U. 
P,   =  -  u.u,   :r-i 
k 1  1  3x. 

and 

3u.       3u.   3U. 3U.       aU.au. 3u 3u     Su 

JIJ JIJ JIJ 

In equations   (3.12)   and  (3.14),   each of the terms   -B(g~u7? + g/tTT)   and 

-Bg^u^e  is called the buoyancy production and is a new source term in 

the budget of Reimolds  stress  and turbulent kinetic  energy.     The 

turbulent heat  flux pcu~5" now assumes  an additional role,  because  it 

participates   in the production terms   for both k and "P.     In the u~9" 
i 

equation above, the new term due to buoyancy is 3g,8^ which needs to be 

modelled as it is an additional unknown.  To model it, a transport 

equation for "G^ is next derived. This equation is obtained by 

multiplying the equation for 9 by 28 and taking the ensemble average. 

This results in 



'm 

The quantity 9  can be considered as the intensity of temperature 

fluctuation. Thus, pc /O^ represents the fluctuating thermal energy.  In 

other words, Q^  is to the turbulent heat flux as k or u.u ./2 is to the 
1 X 

turbulent stress.  In equation (3.16), the rate of change of 9^ is 

controlled by turbulent and molecular transport of "O^   ( the first two 

terms on the right hand side of the equation ), the gradient production 

( which is like the production term of turbulent kinetic energy ), by 

molecular dissipation ( a is the thermal diffusivity ) and the 

frictional heating (the last term). 

The molecular dissipation of temperature fluctuation (the fourth term 

on RHS of equation (3.16)) is similar to the dissipation of turbulent 

kinetic energy, e. This term, o09/ax,) (38/3xO, is denoted by £„, in 

analogy with s, and represents the dissipation of the temperature 

fluctuation 9^ or the fluctuating thermal energy, e. is an unknown and, 

therefore, an empirical relation or a transport equation similar to s- 

equation is needed to solve it.  Here, the transport equation for EQ is 

derived by differentiating equation (2.5) with respect to x., then 

multiplying it by 2o(38/3x..) and taking the average.  This gives 

^ _ 3_r     —r~   ^    ^'9.       ,   ^^'l  39     39 ,   3T    TT^l 
Dt   "ax/ ' '9 ^n ^ °'axj ■ -"ir: sT IT ' 2°^ ^ ^ 

* l ill 111 

„   "^l  39     39 ^,   3^9        ,^ 3(*'   39 

X       1       I 2i IX 
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It should be noted that s  appears only in the i^-equation and hence 

plays a less important role than E-equation in the determination of the 

mean flow quantities such as U., P and T.  For this reason some 

researchers [23] employed a simpler, empirical relation to model the 

behaviour of t.  to minimize the complexity in turbulence modelling. This 

will be discussed in more detail later. For buoyant flows, the terms "u~B" 

appear in both u.u. and k equations and so the turbulent momentiun 

transfer and thermal energy transfer are now coupled. 

All nonbouyant terms are modelled the same as before in chapter II 

and so only the -modelling of the buoyant terms is given in the next 

section. 

3.2 Turbulence model , • 

In equation (3.12) for u.u., the only term that requires additional 

modelling is the pressure strain term. To model this term, the 

divergence of equation for fluctuating velocity, which is equation (3.7) 

subtracted from equation (3.10), is taken to give 

X - -  f 3^3^ ^ 'i^ i^ "■ ^h JT^ (3-18) s I    m ml I 

Using Green's theorem, pressure is obtained to be 
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- = !-/. 
9^ (u.u     -  u.u  ) 3U.   9u .n      ,     ■, 

p 4Tr voil' 3x, 3x '^     3x     3x„ °Z   3xJ      r 
^s 1     m m       H 2, 

IT  Js   p   3x r r   3x  p 

where the surface integral, the second term on the right side, is 

negligible for flows far away from the solid wall. Thus, when the volume 

of integration is sufficiently large, the pressure strain term in 

equation (3.12) becomes 

Sir   3u~   , (    3^(u„u  - u„u )    3U„ 3u       .„ 

p ^3x.   ax.^   4iT vol^    ax.3x       ~3x  3x.   ^°Z   3x/ 

3u,  Uu. , . 
(^: + _-L)dvol 
^3x.  ax.-*  r 

J    ^ 
= I*. .,+«..„ + 0.. - (3.20) "^ij,!  ^ij,2   ij,3 

The superscript * denotes the term involving the integration .variable. 

Here 0.. .,   0.. _ and 0.. „ correspond respectively to the first, second 
ij > 1  ij > ^     ij > -^ 

and third terms in the volume integral. The reason for dividing it into 

3 parts is that the pressure strain is caused by the fluctuating strain 

rate, <f). .   ,, the mean strain rate, 0.. „, and buoyancy, 0., _.  The 
ij,l ij,2*       -^  ■"  ij,3 

modelling of terms 0..  amd 0..  is the same as before and is 

0.. , +0.. o = -C, JCuTu". - |6..k) - C-(P. .   • h. .P. ) 
^ij,l   ij,2     1 k^ 1 j  3 ij ^   2 ij  3 ij k' 

where 

  3U.   au. 
P. . = - u .u, r—^ and P, = - u.u^ T— 
ij     1 1 ax..       k     1 1 3x, 
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The third term, which is a new term related to the the buoyancy, is 

modelled as [20] 

.3  4TT J 

an'* 3u.   3iu~",  , 
^    = ^ I o   ie_,_i ^ _L^dvol 
^ij,3  4TT J ^^Z 3X/3X.   ax/  r 

= - C-[P.. , - |6..P, ] 3' ij,b  3 ij b' 

where 

^j.b = - ^«j^^- »Si^ 

and 

The RHS of this equation is the return-to-isotropy part due to buoyancy 

and is similar to 0..  , which is the return-to-isotropy due to velocity 

fluctuation.  These models are obtained by contracting the volume to a 

small value and ensuring that when the flow is approximately 

incompressible or i=j the pressure strain is zero.  Hence the modelled 

u.u.-equation is • 
1 J 

Du.u.   ^     , j 3u.u.    3u.u 

Dt     3x^^\ e  3x^  ^ ^Xj^  J   ^ij  ^j.b  3^j' 



The modelled k-equarion can be directly obtained from the above equation 

by substituting i=j and summing to give 

Dk  a  ,^ k^ak ,  3k ,    ^"i  „     - 

It should be remarked here that except the first term on the right side 

of equation (3.22), which is modelled, every other term in the equarion 

is exact.  In modelling the e-equation (3.15), the new gravitational 

term 23g.v(3u./3x.) (38/3x.) is set approximately equal to zero due to 

the postulation of isotropic dissipation for small eddies. However, the 

destruction terms, the last two terms in equation (3.15), are modelled 

based on the two-scale concept to include the influence of buoyancy. 

This is based on Lumley's assumption that the destruction term is 

3u. 3u. 3u.      TT!   I T,  ,  ^ , 

Here the production of k comprises of both production due to shear 

force, P, , and buoyant force, P, , in equation (3.22) and t is the time 

scale of destruction. Thus, based on the two scale turbulence model 

concept 

3u,   3u.   3u. 3''u.       2 

-2^i^ 3^ 3^ -  2t-iztr]     = Constant *   [\] [P^ + P^  - c] 

= Constant *   (E/V)^[P    + P     -  S] 

where 
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3U. 
1 

. P, = - u.u. T— and P, = - 3g.u, 
K     11 3x        b     ^1 1 

Here, again the time scale, t, is based on Kolmogorov scale and not the 

convective scale (k,e) for large eddies. Therefore, the final modelled 

E-equation is 

DE _ 3  .- k^3E ^ 3E ,   .  , , A  ^"i 
Dt-i^tC^-^ + v—] -C^^(E/v)u.u. — 

- C^^it/v)^z  + C^^(t/vfy^ (3.23) 

The exact u.9-equation is 

D^  3    -pg-  ~ar   THuT 
r-^ = |—[-u,u.9 - 5.,^ + au,-P- + v T-"^] - Bg.T 
Dt    axj^^  £ 1    xl  p a3Xj    3X^   *i 

ax  _5U..       305   p,j  j. 

■'"i-iV '"'■'^l'   '  "'■^'5J^ " A*  Pc"*^! "■'" 1 

The last term in equation (3.24) is the frictional contribution to u~B 
1 

which is normally small and will be omitted in the study.  The only term 

that requires additional modelling when buoyancy prevails in equation 

(3.24) is the pressure strain term which is obtained by multiplying 

equation (3.19) by 3e/3x. and taking an average, or 

-ir 

£ IL. = i_ /   riJVm 16_ ^   !^ !;^ ae_ as: 3e_idvoi .„ „^ 
p ax      4ii voi^ax.s'x   ax.       ax   ax. ax.     ^^i ax, ax.^    r (3.^5) 

1 iomi mHi I       X 
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Shrinking the integral to a small volume, this terra may be approximately- 

set equal to 

^ — = Const .• [—— _ -f 2— — — - eg, ^ ^]l' 
'^       1  :, .•..;.      2. m  1     mil Hi 

au. 

m 

Hence, the modelled u.8-equation is 

°^^_3  ^, ^^'^^     ^^^   ^— 3T ,-^^^\^ 

au. 
" ^Tl "^ "■  ^T2 3^57 ■ (^ ^ Ss^K^ (3.26) 

The 8^-equation in exact form is 

a I I I     I       ^ 

The diffusion term is modelled according to postulate 2 in the principle 

of modelling outlined in chapter II to be 

.TT7 _ p k^iii 
I 

Letting the friction term, 0*8, to be negligible, the modelled 

e^-equation is . 

I I I 
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It should be remarked that the £_ term in the above equation is an 

unknown and can be modelled by an empirical relation such as equation 

(3.2Sa) based on Launder's suggestion [20] or by solving a transport 

equation.  For most practical cases, it is sufficient to use such a 

simple empirical relation by assuming that t„  is a function of E or 

^9 = Cg^ ^z (3.28a) 

where C^^is  a dimensionless  constant  andT^/k  is   required to make  the 

dimension  consistent.     For more  rigorous  modelling,   the  exact  equation 

for  Eg  can be  derived as 

Dt ax/       ^9  ^£ + "axj       2a— — —  -  2a— — — 
* * lliC 111 

au; 
0      'ii   39     36 ^,   3^9       ,' ,   a0'   39 

■ ^^'a^T a^T aZ - 2[a^3ri7:I    -^ 2a^ ^ (3-29) 
1       1       X. £.1 11 

The diffusion term  is modelled as 

r-T-     , k^^^e 
■  '9 ^£ = ^e E   3^ 

The^production term is small due to isotropic dissipation and 

incompressibility. Hence, 

J^  36_ a9_ 
"ax. 3x. ax„ 

1  1  n 

The terms 
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"^ 39    i _,   30' 36    ■ '  ■■; , 
ar— T— and  a-— -— 
3x. 3x. 3x, 3x. 
11 11- 

are also small due to isotropic dissipation.  The destruction term is 

modelled based on Lumley's assumption.  Thus 

^ ^^£ 36  39   _ 3'9   ,^  ^     ^ _,   ,^9,,Prod of 9^ 
- 2^^377 IT I^ - ^["i^Ti^T^  = Constant -   [^] [-^- 1] 

1  1  il       i  1 9 

In the present investigation of the two-scale turbulence model, the time 

scale in the above equation is taken to be that of the destruction term 

in the E-equation namely that of Kolmogorov scale [t] = (v/s) . 

Destruction of £« is modelled as 

X X I I       X I 

Therefore, the modelled e. equation is 

Summarizing the complete two-scale turbulence model for buoyant flows, 

the equations for the turbulent quantities are 

Du.u.   .     , 2 3u.u.    3u.u. ^ 
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Dk _  a      _     k^3k    ^     8k   ,            ^^'i       ,    —^ 
Di - i^f-k I  3^ ^ ^3;^]   -  ^i\ I^  -   ^§1^^ -  ^ (3.22) 

De _ 3_r„    k^3e     ,     3e   .       _     ,   .  A ^^'i 

-  C^^(z/^)^t  + C^3(e/v)*Pj^ (3.23) 

1      _   i rp      fc 1       ,       __1    1 r       oT       ,    5      1, 
Dt   - JT.^'^T r 3^- ^ "i^] - f^^ iir + '^£9ir] 

III II 

3U. 

-  C^i l^ + C^2   33r^ -   (^ ^ ^13^^21"^ (3.26) 
m 

5r = lx:t(Sr'*^'l?i-^J?i--2=e (3.28, 

Sr = fe;[(^e f  ^ ^^^1   -  ^el^^/^^^^li^  ■  Ce2(^/^)^^9 ^^-^O) 

In addition to  incompressible turbulent  flow equation  for u u   .   k.   e 
1 j 

and u 9, two additional equations for ~^  and E. are needed in the 
^ o 

buoyant flows. Also, in addition to 9 turbulent coeffecients C, , C , C , 
k'  1'  2' 

^E' '^el' ^E2' '^T' *^T1 ^"^ ^T2 ^^^'^^'^ ^°^ nonbuoyant flows, 6 more 

coefficients are needed in the turbulent buoyant flow prediction, 

namely, C3, C^^,   C^^,   C^, C^^ and C^^- 
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3.3 Governing Equations for turbulent 
free shear flows with buoyancy 

For two-dimensional turbulent free shear flows, the above governing 

equations can be simplified considerably.  The assumptions made in 

obtaining turbulent free shear flow equations are 

1. Diffusion in the direction normal (y coordinate) the flow is much 

. larger than the diffusion in the direction parallel (x 

coordinate) to the flow. 

2. Pressure gradient is small in the flow. 

3. Laminar shear stress is much smaller than the turbulent shear 

stress. 

4. Boussinesq approximation applies. 

5. Frictional heating is negligible. 

With these assumptions, the mean equations (3.9), (3.10) and (3.11) 

for turbulent Shear flows under Boussinesq approximation are 

•'     y-'  ■' a 

and 

€ * ^i = ■ 1 fjiy'^i "■") 
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where T  is the ambient temperature.  j=0 for plane flows and j=.l for 

axisymmetric flows.  Equations for the turbulent quantities reduced from 

equations (3.21), (3.22), (3.23) and (3.26) with the x-direction aligned 

to the gravitational vector. 

,,3uv , ,,3uv _ 1  3 f j^  kPauv,   —3U   . —- 

g       in      __^ 
- C^ ^uv + C,-uv— + C^gHFB (3.34) 

..3E , ,,3e _ 1  a r Jn kv^Sk, ^ _ .   ,  Ar  —^U^ 
^3^ ^ ^i^ - ^ 3ity ^e -z   3^1 ^ C^i^^/^^^-'^V 

^ C^^iz/^)^^ - Q^^{z/v)^z (3.36) 
a 

..auST  ,,3^ _ 1  3 . j_ kv^3"i^.  _3T  —saU 

- C^, p . C^^75|^ . g-^i^-^P (3.37) 
a 

^3x  ^ay   j ay^y ^8 £ ay J  ^''^ay  ^81 k^ (2-28) 

It should be remarked that since the term "P-  appears in equation (3.37), 

a transport equation for "G^ is used.  In equation (3.38) an 

approximation for E., as suggested by Launder in equation (3.28a), is 

made so that an equation for £„ is not required. 
0 
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It is necessary to solve all the above equations to complete the 

prediction of turbulent buoyant shear flows. However, a considerable 

amount of computational effort would be required to solve the whole set 

of equations. Therefore, some simplifying assumptions are further made 

to reduce the number of differential equations to be solved. One such 

assumption is to neglect the convective and diffusive transport rerms of 

u.u. and u. b equations. This leads to the following approximated 

algebraic relations for the uv, v', vS, uS and 8^ terms. 

  ^ " ^2 v%, ^  kgOT/ay)   ,k^au 
- ^^ = -^^k t^^  C^^.TJ3U/8y)^r a^ ^3.39) 

v^ = C^k (3.40) 

—r-   1 ^k^aT 
-^^=c;^kFa7 (3.41) 

-^ = cbt--|?--^(^-^T2)|^-S^^-^^l (3.42) 
Tl ■" a 

8" = - 7^^ 
Cg^. ay (3.43) 

In the present investigation, these algebraic equations are solved with 

two-scale k and £ equations in differential equation form. This 

simplified turbulence model is known as the two-scale k-e model and is 

perhaps most practical model for predicting details of mean motion and 

turbulent transport properties. 
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3.4  Determination of coefficients 

Most of the coefficients in the above equations have been derived i m 

chapter II and so only the two additional coefficients C  and C 
T3     91 

required in solving buoyant free shear flows are discussed here. 

3.4.1 Coefficient CQ, 
ol 

This coefficient is obtained from experimental data of temperature 

fluctuations behind a grid. Figure 3.1 shows the decay of 6^ measured by 

Gibson and Schwarz [24]. From this figure, 8^ is found to vary inversely 

as the three-halves power of distance behind the grid. 

For such a flow, the 8^-equation [equation (3.38)] becomes 

,, d9^    o^  8^ 
■ "o dT = - 2Cei^k (3.44) 

Non-dimensionalizing this equation with the variables 

O    ■      o 

the following equation is obtained. 

dp"' E'-T' 
dZ- = - 2Cei ^'^ (3.45) 

In section 2.4.1, k and e were found to be 

k' = _A50_ ,-1 _ 450  ,-2 
^   40000^     ^"'i  ^  - ^3000^ 

Further, from figure 3.1, the relation between 9^' and x' is found to be 
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Figure 3.1.  Decay of 9^ measured 
by Gibson et al. 
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|2'  _ o  ,..t-1.5 = 3.1x' 

Substituting these in equation (3.45) gives 

-^*3 i^x'"^-^ = - 2C r-A^O-w'-^r^oooo , .^^r-i.5^ 
Z ^^91^40000^''  ^ 450 '"' ^^-^^    ^ 

This results in 

Si = 1 = 0-^5 

the commonly used value of Cg^ is 0.62. This is, however, obtained from 

Launder's assumption in equation (3.28a). In the present investigation, 

a value of 0.75 will be used. 

3.4.2 Coefficient C 

This coefficient is generally set equal to C   [20] which has been 

obtained earlier in chapter II to be 0.5.  Hence, a value of 0.5 is'used 

for C^3. 

3.5 Concluding remarks 

In section 3.3, it was mentioned that due to Launder's argument, the 

equation for Sg was replaced by an algebraic relation. Hence, the 

structure of the turbulent heat flux 8^ is represented by only the (k.s) 

scale only.  In flow situations, where t„  might be an important 

parameter, the need for solving the complete Sg-equation [equation 

(3.30)] would be important.  This would bring in the influence of the 
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two-scale concept or the effect of viscous dissipation in the thermal 

dissipation or destruction £» in the turbulence model. 
D 



CHAPTER IV 

REVIEW OF EXPERIMENTAL WORK 

4.1  General remark 

This chapter briefly reviews various experimental data for free shear 

flows. The types of flows considered are jets, wakes, mixing layers, 

coaxial jets and buoyant jets.  Reliable experimental data are selected 

for comparison with the predicted solution obtained from the proposed 

two-scale turbulence model. Table 4.1 shows the definition of the 

spreading rate, S, for different flows which will be used for comparison 

later. This rate of spread is a gross parameter independent of the 

distance x.  The symbols used in the definition of S are shown in figure 

4.1.  In addition to the rate of spread, detail of velocity and other 

profiles are given in the following section. 

4.2  Jets flowing into stagnant surrounding 

The gross parameter of importance to the jet flows is the spreading 

rate, S, which is defined as 

^    =    A dx 
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Plane or Round Jet 

"i 

I • ^'1 '    II 

ii-s <£ 

Plane Wake 

U. 

U. 

*\ ;V. 
Plane 

Mixing Layer 

I ^x 
Figure 4.1.  Definition of symbols. 
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Table 4.1 

Definition of spreading rate S 

Flow 

Jets 

Wakes 

Mixing Layers 

dyj^/dx 
2  

(Ug/w^)[dy^/dx] 

d(y 0.5 yo.9)/dx 

Here, y^ is the normal distance from the jet axis where the axial 

component of the velocity is one-half the centerline velocity U . The 
c 

spreading rate S is found to be a constant when the flow becomes self- 

similar in the far region.  The definition of self-similarity or self- 

preserving is that the profile or distribution of dependent variables 

are similar from one station to another and become identical when they 

are made dimensionless by the local reference quantities. It should be 

remarked that experimentally it is foimd that although both profiles of 

the mean flow variables and turbulent transport quantities become 

similar the former usually occurs first.  It is also found that the 

initial condition at the nozzle exit affects only the near jet region. 

Therefore, the rate of spread and various profiles far downstream are 

the same regardless of the inlet conditions. 

4.2.1 Plane iet 

Table 4.2 summarizes the important flow parameters measured for plane 
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jet by sovoral invobtigators [25-2')].  Tho r^nge of experimental data 

was between 5 aiui 150 tiaies the nozzle width. In eoch of the cases, self 

preservation started at a different location downstream of the nozzle. 

This could possibly be due to the different initial conditions such ^.s 

velocity profiles or turbulent intensity level.  Nevertheless, the rate 

of spread, center-line turbulent kinetic energy and the maximum shear 

stress in the self preserving region obtained by various investigators 

are about the same.  The results of Bradbury [25], however, showed that 

self-similarity was not reached and the rate of spread continued to 

increase beyond a distance of 70 nozzle widths. One reason for this was 

that in Bradbury's e.xperiment the surrounding air was not stagnant. Rodi 

[4] also found that jets flowing into moving surroundings are only 

approximately self-similar.  However, Bradbury [25] indicated that by 

reducing the velocity of the surrounding air the velocity and the 

turbulent kinetic energy do not change appreciably. 

Figure 4.2 shows the velocity profile in the self-similar region of a 

;.-iane jet obtaiii.-d by Bridhury [25], ll<:skcstad 126], Patel [27], Gutir.ark 

|2S] and Robins [21^].  Except for a small region near the edge of the 

jet boundary, tnere is close agreement between all measurements. Kence, 

It provides a good test for a turbulence model. Figure 4.3 gives tlie 

profile of turbulent kinetic energy k in the far region as obtained by 

various investigators. There is a large amount of scatter in these 

results. Gutmark s results seem to be inaccurate sin ce some 
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Table 4.2 

Parameters for plane jets 

Investigator Bradbury Heskestad Patel Gutmark Robins 
■ 

Nozzle 
size(cm) 

46 * .95 150 * 1.25 80 * .7 50 * .13 -- 

Range 
x/D 

14-70 47-155 12-152 10-150 5-100 

Reynolds 
number 

30,000 4700- 
37,000 

35,000 30,000 10,000- 
60,000 

Self-pres. 
x/D 

30 65+ 30 120 60 

S   0.11 0.103 0.102 0.103 

Maximum 
Re3pTiolds 
stress 

0.026 0.021 0.021 0.024 0.02 

Max turb 
kinetic 
energy k 

0.067 0.07 0.064 0.077 0.064 

abnormalities were reported by him in his experiment that the velocity 

decay had an abrupt change at x/D=65 and the dissipation rate was only 

20 %  of the production of turbulent kinetic energy.  Heskestad's results 

indicated an increase in the value of ^'Vu ^ even beyond 160 nozzle 
c   o 

Widths. Also, Bradbury indicated that his measurements of T^  > 1?  seem 

physically unlikely.  Experimental results of Patel and Robins are also 

shown for comparison purpose.  In general, their measurements are 

smaller than that of Gutmark, Heskstad and Bradbury.  In figure 4.4, 

Bradbury's measurements of the Reynolds stress are shown at two 
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different locations. The maximum value of Reynolds stress is 0.026 which 

is slightly higher than that of other investigators quoted in table 4.2. 

A plot of the centerline velocity decay along the jet axis is given in 

figure 4.5 as obtained by Bradbury et al. [30] and Van der Hegge [31]. 

From this figure, the potential core length or zone of development is 

estimated to be about 6 times the exit jet width.  Bradbury's data shows 

a lower decay rate than that of Van der Hegge.  This slight difference 

in the two results could be due to different inlet and free stream 

conditions as it is known that by changing the inlet turbulent kinetic 

energy, the length of the core will vary. 

4.2.2 Round jet 

Table 4.3 shows some of the gross parameters obtained by Hetsroni [32], 

Wygnanski■and Fiedler [33], Rodi [4] and Shearer and Faeth [34] for a 

round jet. The measurements for mean quantities by Hetsroni and by 

Wygnanski were done up to a distance of x/D=35 and 40 respectively. 

Shearer measured the flow quantities up to a distance x/D=510 and the 

measurements were slightly different from the other two investigators. 

It is, therefore, assumed that the initial condition still has a 

significant influence on the measurements at x/D=4G and the flow profile 

may not reach the self-similar condition. Hence, Shearer's results are 

assumed to be more reasonable. For comparison purposes, the latter 

result will be used. 

The velocity profile is shown in figure 4.6 where there is a small 

variation between the measurements of Wygnanski and Shearer. The 
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difference could be explained by the lack of similarity at x/D=40.  Tnis 

discrepency in the result is further amplified in the measurement of the 

kinetic energy as shown in figure 4.7. Wygnanski and Fiedler obtained a 

value of 0.1 for the centerline kinetic energy at a distance x/D=40. 

However, Shearer's measurements indicate a value of 0.08 at x/D=510. 

This value seems to be more reliable and realistic because the 

measurements were taken sufficiently far away where the jet is most 

likely self similar and there is no influence of the inlet conditions. 

The variation of Reynolds stress is shown in figure 4.8.  Here, too, the 

measurements of Shearer are slightly different from those of Wygnanski 

whose data is for x/D=60 and 70.  Some scatter of data is obvious from 

the figure. The decay of centerline velocity for a rovmd jet is 

presented in figure 4.9.  Along with the data of Shearer and Wygnanski, 

the measurements of Corssin [35] are also provided. These data are more 

agreeable, though the measurements of Shearer start from x/D=50. 

4.3 Plane wake 

One of the important global parameters for the wake flow is the 

spreading rate of the wake. The spreading rate for the plane wake, S, is 

defined as 

s3|i 
w dx 
o 

Here, y^ is the normal distance from the symmetry line to the location 

where the x-component velocity U is (U + U_)/2.  U and U are 
c   E      c     E 
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Table 4.3 

Parameters for round jets 

Investigator Hersroni Wygnanski Rodi Shearer 

Nozzle 
size(cm) 

2.5 2.6 1.29 0.1194 

Range 
x/D 

15-40 40-98 62-75 170-510 

Reynolds 
number 

  100,000 
• 

87,000   

Self-pres 
x/D 

15 70 62   

S 0.0713 0.086 0.086   

Maximum 
Reynolds 
stress 

  0.0165 0.0186 0.0195 

Max turb 
kinetic 
energy k 

  0.101 0.078 

respectively the velocity at the symmetry line and the free stream line. 

w is the defect velocity or (U_, - U ). 
o E   c 

Extensive measurements have been made, over several decades, in the 

wakes of two-dimensional bodies. Data is available both in the near wake 

and far wake regions.  The earliest one was by Chevray and Kovasznay 

[36], who measured the mean velocity and turbulence quantities in the 

near region of symmetric wake of a flat plate.  They measured the 

spreading rate and obtained a value of 0.062 but this value was still 

increasing with x.  Their spreading rate measurement did not agree well 
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with that of others who obtained values ranging from 0.09 to 0.11. The 

disagreement is due to the fact that the wake was formed behind a 

streamlined body which may influence the wake structure. Patel [37] 

observed that it takes a distance of 3008 for a wake to become self- 

similar.  Therefore, a change in the initial condition at the trailing 

edge before wake formation could influence the mean and turbulence 

quantities in the wake region for a considerable distance downstream. A 

physical explanation for this behaviour is that unlike jet flows the 

production of turbulent kinetic energy is low- in the wake flow and 

dissipation is high.  Therefore, the initial or the upstream conditions 

for the wake must be accurately prescribed if one hopes for a meaningful 

comparison between the prediction and measurement.  In particular, the 

turbulent kinetic energy level and the shear stress may be influenced by 

the initial conditions far downstream. 

Comparisons between prediction and measurements were limited to the 

decay of center-line velocity deficit. However, recent measurements by 

Andreopoulos [38], Pot [39] and Ramaprian et al. [40] provided abundant 

experimental data for comparison with the prediction based on turbulence 

models. The measurements of Andreopoulos and Ramaprian were done in the 

near wake region while those of Pot were in the asymptotic region for 

flow past a flat plate. Hence, their data provides a good test for the 

performance of the two-scale k-e turbulence model in both the near wake 

and far wake.  Table 4.4 summarizes some of the work done in recent 

years.  Figure 4.10 shows the asymptotic velocity deficit profile 
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obtained from the asymptotic theory along with the result of Pot. There 

is a slight difference at the edge of the wake which is probably due to 

the fact that the flow is not fully turbulent in that region.  In figure 

4.11, the Reynolds stress profile is shown and compared with the 

asyTnptotic solution. Except for a small region near the edge of the 

boundary layer and around y/y^ of 0.90 , the solution lies on the data 

points.  The measurement of the centerline velocity deficit variation 

with x/e is shown in figure 4.12. 6 is the momentum thickness based on 

the velocity profile at the trailing edge of the flat plate. 

Table 4.4 

Parameters for plane wake 

Investigator Chevray 
Kovaszny 

Ramaprian Andreo 
polous 

Pot 
et al. 

Body flat 
plate 

flat 
plate 

flat 
plate 

flat 
plate 

Range 
x/9 

0-207 10-79 0-43 3-948 

««e 1580 5220 13600 2940 

s 0.062 0.12 

Max Rey 
stress 

0.05 0.05 

Max Turb 
kinetic 
energy 

0.07 0.18 
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4.4 Plane mixing layer 

Table 4.5 summarizes the experimental data measured by various 

investigators [41-46].  The spreading rate, S, is defined as 

where y^ .^^ and y^ ^ are respectively the normal distance from the 

dividing plane to the location where the x-component velocity is 0.1 and 

0.9 of (Uj. - Ug). Both Reynolds stress and turbulent kinetic energy are 

normalized with (U^ - U^).  It can be seen from the table that there is 

a large variation in the spreading rate. This is a major source of 

concern in recent years [46]. However, recent data by Husain and Hussain 

[47] indicates that an isolated mixing layer does reach a unique 

asymptotic spreading rate. 

Nevertheless, the developing region of a mixing layer is not very 

well understood. This is due to complex interaction of the two wall 

boundary layers and the two shear layers. For calculation purposes, it 

is important that well defined initial conditions and sufficient 

turbulence measurements be available to characterize the main features 

of the flow. Also, the data should cover the complete mixing region.  At 

present, no totally satisfactory set of data is available.  However, 

some of the measurements of the velocity are shown in figure 4.13. Most 

of the data falls on one curve indicating that the results are in good 

agreement.  These results were obtained under different conditions at 
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Table 4.5 

Parameters for plane mixing layers 

Investigator Wygnanski Liepmann Patel Sami 

Dimension 
(cm) 

51 * 18 152 *  19 76 * 43 30 dia. 

Range 
x/D 

58 90 100 450 

Max Re 465,000 1,100,000 1,800,000 660,000 

S 0.2 0.16 0.165 0.163 

Maximum 
Reynolds 
Stress 

0.0091 0.008 0.01 0.0109. 

Max turb 
kinetic 
energy k 

0.035 0.02 0.0275 -- 

the start of the mixing layer. Measurements of Albertson et al. [43] and 

Sunyach et al. [44] were in the initial region of a plane jet while Sami 

[45] and Bradshaw [46] obtained data in the initial region of a large 

round jet which is approximately considered to be two dimensional.  In 

figure 4.14, the kinetic energy profiles of self similar mixing layers 

are shown.  Unlike the velocity profile, there is a large amount of 

scatter and, thus, it is difficult to say which data is more accurate. 

Part of this discrepency is due to the variation in the initial 

condition. 
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i:J Jets flowing into a parallel moving stream 

Unlike the flow of jets into stagnant surrounding, this type of flow 

is known to be approximately self-similar. Due to the presence of the 

moving fluid in the surrounding, the flow has two distinct 

characteristic regions. Close to the jet or the near region, the 

centerline velocity U^ is much larger than the free stream velocity 

U^.i.e. 

U 

Therefore, the mean strain rate is high. In this region, the flow 

properties are similar to that of a stagnant jet. Far downstream, the 

jet centerline velocity is only slightly larger than the free stream 

velocity,i.e. 

U 

5^ = 1.. 

where 6 is small. Hence, the strain rate is weak and the velocity 

profile resembles an inverted wake velocity profile. This region is 

sometimes termed the 'wake like ' region. 

Due to the change in the flow characteristic from large strain rate 

to small strain rate, jets flowing into moving stream provide a good 

case for testing a turbulence model. 
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4.5.1 Plane jet 

Although the spread of turbulent jets issuing into parallel moving 

streams has been the subject of a number of theoretical treatments [48], 

reliable experimental data on these flows are still comparatively 

sparce. 

Figure 4.15 shows the velocity profile measurements made by Bradbury 

et al. [30] for several ratios of U_./(U - n ).  Since the centerline 
r.   o   ii 

velocity decreases with x, these ratios effectively correspond to 

different x locations in the flow field.  All the profiles coincide into 

a single curve indicating that the flow is approximately self-similar. 

In figure 4.16, the centerline velocity decay is shown.  In both the 

figures, the ratio of the free stream velocity U to the nozzle velocity 

U., was 0.3. 
N 

4.5.2 Round jet 

Figure 4.17 shows the plot of mean velocity profiles at three 

different stations as obtained by Antonia et al. [49]. All velocity 

profiles fall into a single curve, indicating that the mean flow is 

almost self-similar. The ratio U^/U for this data is 0.3. 

In figure 4.18, the Reynolds shear stress is shown for various 

locations of x/D ranging from 38 to 248. There is a considerable amount 

of scatter at y/y^ < 0.8.  However, the shape of the data curve is 

similar and has a peak at about y/y,=0.8. 
2 
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4.6  Buoyant jets 

The turbulence model for the prediction of the turbulent buoyant flow 

is given in chapter III. In order to verify the model, some reliable 

experimental data is necessary. The existing turbulence models du i-1 

predict the mean and turbulent quantities close to experimental data 

unless the model constants are altered.  Chen and Rodi [50] have 

collected available data on buoyant jets which can be used to verify the 

performance of the two-scale model. Unfortunately, experimental data, 

especially the turbulence quantities, for buoyant flows are not 

sufficient for an accurate test of the model. 

4.6.1 Plane buoyant jet *. 

Table 4.6 shows the plume region of buoyant plane jets. The modified 

Grashoff number, which is the product of the Grashoff number and the 

heat flux, ranges from 3,900,000 to about 966,000,000.  The Grashoff 

number is defined as 

g(p. - P„)D' 
Gr = ^  

PQ^ 

where        ''•■-'.' 

p =ambient fluid density, 

P =fluid density at nozzle exit o 

V =kinematic viscosity 

D =jet width or diameter 

The rate of velocity spread which is defined as 
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dx 

is measured by the various investigators to vary from 0.095 to 0.147. 

The recommended value is 0.12. The thermal rate of spread is defined as 

dy 

^T ~ dx 
il 

where y^^ is the location where the temperature is one-half that of the 

centerline temperature.  From the temperature measurements, the thermal 

rate of spread has been obtained by most investigators to be around 

0.13. 

Table 4.6 

Gross parameters for buoyant plane jets 

Investigator Rouse Kotsovinos Harris Anwar 

Modified 
Gr No. 
*10S 

39 470 9660 - 

Froude 
No. 

- 1.4-5.9 4-193 16-100 

(x/D) 650 43 70 50 

S .15/.14 .095 - - 

Thermal 
Spread 
rate 

.13/.14 .12 .135 .131 
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The velocity and temperature profiles for a plane jet are shown in 

figures 4.19 and 4.20.  The first figure is for a pure jet measured by 

Bradbury and Van der Hegge while the second is for a pure plume obtained 

by Rouse et al. [51 ]. These are two extreme cases of a buoyant jet. 

The centerline velocity according to Chen and Rodi [50] can be divided 

into three distinct regions in a buoyant jet, namely, the near or the 

non-buoyant region, the intermediate region and the plume region.  In 

all the three regions, the experimental data lies closely to the 

theoretical lines which are obtained from similarity analysis.  Hence 

the profiles at all Froude numbers should lie between those of pure jet 

and pure plume.  Figure 4.21 shows the Reynolds shear stress for plane 

buoyant jets obtained by Ramaprian et al. [52]. Their measurements 

around y/yi=l shows some scatter.  In figure 4.22, the turbulent normal 

stress distributions measured by Kotsovinos [53] and Bradbury [30] are 

shown.  Bradbury's data is for a pure jet while Kotsovinos's 

measurements are for a pure plume.  It can be seen that the turbulent 

intensity in a pure plume is much larger than that in a pure jet. 

4.6.2 Roujid buoyant j et 

For a round buoyant jet, Table 4.7 summarizes the gross parameters 

obtained by different investigators. The modified Grashoff number varies 

from 10* to 10^'. The rate of velocity spread varies from 0.084 to 

0.12. The recommended value is 0.112. The value suggested for the 

thermal rate of spread is 0.1. 
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Table 4.7 

Gross parameters for a buoyant round jet 

Investigator Rouse George Abraham 

Modified 
Gr No. 

3 
'^lO 

1.38 13.3 4.53 

Froude 
No. 

- .714 1.82 

(x/D) 75 16 26 

s .084 .112 - 

Thermal 
Spread 
rate 

.098 .104 - 

In figure 4.23 the velocity and temperature profiles are shown for a 

pure jet where the Froude number is infinite. The data is obtained by 

Rodi for velocity and Ruden for temperature. On the other hand, figure 

4.24 shows the velocity and temperature distributions obtained by George 

et al. [54] for a pure plume where the Froude number is 0.  The 

turbulent kinetic energy in buoyant jets is shown in figure 4.25. 

Rodi's measurements are for a pure jet while George's measurements are 

for a pure plume. Unlike the plane buoyant jet, there is a decrease in 

the turbulence intensity for a round jet due to the presence of 

buoyancy. Hence, more experimental data is needed before a meaningfull 

conclusion of the accuracy of the turbulence model can be made. 
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4.7  Summary 

From the experimental data reviewed above, it can be summarized that 

though the amount of data is enough to adequately test a model, it is 

still not complete. In most cases, there is no experimental data of 

turbulence quantities at the inlet, thereby making it difficult to 

compare the prediction of flow near the initial region particularly in 

the near region of the wake flow.  Also, in wake and jet flows, the 

turbulence at the inlet influences the velocity and kinetic energy in 

the near region. Therefore, small discrepencies between experimental 

data and numerical calculation using the turbulence model may not 

indicate that the model is unsuitable. Due to lack of initial condition 

some trial and error or guess of initial turbulent condition during 

computation is necessary in order to examine or compare the experimental 

data with numerical results in some region of the flow. 

In chapter V, the prediction based on of the two-scale turbulence 

model for nonbuoyant flows is compared with the experimental data. 

Chapter VI contains a comparison of the results of the two scale model 

for buoyant flows and experimental data for such flows. 
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CHAPTER V 

PREDICTION OF TURBULENT NON-BUOYANT FLOWS 

This chapter presents the results obtained by the two-scale 

turbulence model for non-buoyant flows based on equations (2.2), (2.3), 

(2.11), (2.12) and (2.13) with the turbulent constants of C =0.9, 

C^=2.8, 0^=0.47, C^=2.00, C^^=17.5/(Re)^ C^^^^^.9/(Re)^, C^=0.13, 

C^^=3.2 and C_„=0.5.  The predicted results are compared with the 

experimental data discussed in chapter IV. Furthermore, prediction of 

the one-scale turbulence model is shown eind compared. For the one-scale 

turbulence model, instead of equation (2.12) for e, equation (1.10) is 

used and instead of C =0.9, C^=2.00, C^ =17.5/(Re)*, C -=18.9/(Re)^, the 

values used are 0.225, 0.15, 1.435 and 1.92, respectively. 

As mentioned earlier, the selection of turbulent free shear flows as 

the first type of flow to verify the predictability of the turbulence 

model is based on the following considerations. First, there is 

sufficient data available for comparison for both mean velocity and 

turbulent transport properties. Second, the pressure gradient in free  ■ 

shear flows is negligible so that the pressure gradient will not play a 

major role in determining the flow field. Therefore, the prediction of 

the free shear flow field is most sensitive to the modelling of the 

Reynolds stress, turbulent kinetic energy and its dissipation. Third, 



125 

the complexity of the near-wall turbulence is absent in free shear 

flows. Therefore, the error in the approximate treatment of near wall 

turbulence can be excluded from the problem and the accuracy of the 

turbulence model can be carefully examined.  Fourth, although it is 

secondary, the numerical procedure in calculating turbulent free shear 

flows is simpler than that in wall shear flows or separated flows. 

5.1 Numerical procedure 

The equations derived in chapter II for free shear flows are 

parabolic in nature and so the GENMIX program developed by Patankar and 

Spalding [55 ] is used. The program has been modified by Chen and 

Nikitopolous [23] and Chen and Chen [56] to include the governing 

equations for k, e and 9 . 

Briefly, in the computation, the two coordinates chosen are the x and 

f coordinates instead of x and y coordinates.  The governing equations 

are transformed from the x-y coordinate system to the x-f system.  Thus 
—r 

the governing equations for U, T, k, s and 8  are cast in the same form. 

—T 
The initial conditions are specified for U, T, k, E and 6  ar x=0. These 

conditions for each flow are given later in the individual section 

describing the flow.  The inner boundary conditions are the symmetry 

conditions for jets and wake. For the mixing layer, the free stream 

conditions apply at the inner side. The outer boundary conditions are 

zero or constant velocity and no turbulence. 
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The solution at each section normal to the mean flow direction is 

obtained by using an implicit method. The marching step Ax at each 

station is calculated from various flow parameters. The grid size Ay is 

0.01 times Ax. A total of 40 points are chosen in the cross-stream 

direction which is verified by Chen and Nikitopolous [23] to provide 

grid independent solution. 

• 
The calculations were performed upto a maximum distance of x/D=73 for 

jet flows and x/8 of 600 for wake behind a flat plate. 

5.2 Prediction of gross parameters 

The first thing to be concerned with is the prediction of gross 

characters of the flow field.  For this the spread parameter is chosen. 

When a model is not capable of predicting an accurate spread rate for 

free shear flows, it is not very meaningful to examine further the 

details of flow and turbulent structure in the flow. 

Table 5.1 shows the spreading rate for various non-buoyant flows. 

For jets, the spread rate S is defined as the slope of y, in the flow 
2 

direction, where y, is the location in the normal direction of a point 

where the U velocity is one-half the centerline velocity, i.e. U,=0.5U . 
i c 

For wake, S is the spread rate times the free stream velocity, U , and 
HI 

divided by the velocity defect, w , or (U„ - U ) as defined in figure 
o      h   c 

4.1.  In the case of the mixing layer, the spread rate is obtained in 

terms of the width of the mixing layer.  The width is defined as the 

distance between the edges of mixing layer where the velocity is 10?o and 
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90?i of the free stream velocity.  From Table 5.1, it is seen that the 

values of S predicted by the one-scale model for round jet and plane 

wake without altering the turbulent constants are significantly 

different from the experimental data while the two-scale turbulence 

model predicts satisfactory results for all cases calculated.  This 

demonstrates that the two-scale turbulence model indeed provides better 

prediction than the one-scale turbulence model. 

Table 5.1 

Spreading rate S 

Flow 
Type 

Soread 
Parameter 

One 
scale 

Exp. 
data 

Two 
scale 

Round 

jet dx 

0.1189 0.08 0.081 

Plane 
jet 

II 
0.1125 0.11 0.109 

Plane 
wake 

II 
0.068 0.098 0.0975 

Mixing 
layer 

II 
0.159 0.16 0.15 

5.3 Jets flowing into stagnant surrounding 

As mentioned earlier, jets flowing into stagnant surrounding become 

self-similar far downstream. For mean quantities, it should take a 

minimum of 40 diameters to establish self-similarity and about 60 to 70 

diameters for turbulent quantities depending on the initial conditions 

at the jet exit.  In the near region, the flow parameters are dependent 
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on the initial conditions like the velocity and turbulent kinetic energy 

at the jet nozzle.  It is necessary to compare experimental data and 

prediction for both near and far regions in order to verify the accuracy 

of the one-scale and two-scale models. Unfortunately, most of the 

available data do not provide complete information about the initial 

conditions prevailing at the nozzle such as, velocity profile, turbulent 

kinetic energy or dissipation.  This could lead to differences in the 

decay of centerline velocity and turbulent Reynolds stress or 

dissipation function.  The results for both plane and round jets are 

discussed below. 

5.3.1 Plane jet 

In the present calculations, the initial condition for the velocity 

is 

U=Uj^exp(-y2) 

The k and E initial conditions are 

k=0.06Uj^*exp(-y2) 

E=0.09k^"VH 

Here U^^ is the jet nozzle velocity.  The 6% and 9% levels of intensity 

are taken here so that the predicted result in the near field resembles 

closely that of the measured data. Similar values were used by Chen and 

Nikitopolous [23]. 
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Figure 5.1 shows the comparison of velocity profile for a plane jet 

in the region of self-preservation at x/D=75.  The experimental data 

shown in the previous chapter is represented once again in figure 5.1 

and most of the points fall in one line. The dashed line is the 

predicted result of the one-scale model while the chain-dashed line 

gives the results of the two-scale model.  The agreement is excellent 

between calculations and experiment, except near the outer edge of the 

jet. 

In figure 5.2, the turbulent kinetic energy is shown. As mentioned in 

chapter IV, there is a large amount of scatter between various 

experimental data, where the maximum k may vary from 0.065 to about 

0.084.  All the experimental data are shown once again along with the 

predictions of the one-scale and two-scale models.  The two-scale model 

predicts turbulent kinetic energy within experimental scatter near the 

centerline. In the outer edge of the jet, the two-scale model predicts a 

larger k. This larger 'tail' is, perhaps, due to the numerical 

diffusion problem. 

The Reynolds stress profile of a self-preserving plane jet at x/D=75 

is shown in figure 5.3. There is a slight difference in value between 

experimental data, one-scale and two-scale models away from y/y,=1.5. 

The maximum Reynolds stress obtained by various investigators, as shown 

in table 4.2, varies from about 0.02 to about 0.026.  The prediction of 

the two-scale model shows good agreement with the data by giving a 

larger peak than the one-scale model. These predictions can be 

considered accurate within experimental uncertainty. 
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The results discussed so far are in the self-preserving region of a 

plane jet where x/D >40. Figure 5.4 shows the velocity decay in the near 

region of a jet. The slight difference in the results can be attributed 

to the difference in initial conditions at the nozzle.  Chen and 

Nikitopolous [23] found that the larger the turbulence intensity at the 

jet exit, the shorter is the potential core length. They found that when 

the initial turbulent intensity is taken to be 6% of the mean flow 

kinetic energy, the predicted potential core agrees with that measured 

by experiment [57]. Therefore, 6% value is used in the present 

calculations.  The experimental data of Van der Hegge [31] and Bradbury 

[30] are shown along with the prediction of the two models.  With 6% 

turbulence intensity, the two-scale model predicts the core length less 

than that of the one-scale model. Hence, it is assumed that a smaller 

turbulent intensity might be necessary for the two-scale model to have 

better agreement with experiment. 

The spreading rate obtained by the one-scale and the two-scale models 

are 0.112 and 0.109 respectively, both of which are close to the 

recommended value of 0.11 obtained experimentally. 

5.3.2 Round jet 

One of the major improvements of the two-scale turbulence model is 

the prediction of round jet flow field. As shown in table 5.1, the two- 

scale model predicts correctly a spreading rate of 0.081 for the round 

jet while the one-scale model, without varying the turbulent constants 



134 

.j.'   ::ii[   i-n; ic 

.. !-{■■;■ "1 ^-' '■'    '      ' ;"'   j"'0 .' '.'^^■'*' 

0.8- 

o 
3 

0.6- 

0.4- 
tJL'r.iyi    rrir 

0.2 

■ VANDER HEGGE   ' 

D BRADBURY & RILEY 

ONE-SCALE 

TWO-SCALE 

>.;:-;.^iKi   •>:i:'  ti- 

j ; --A'S ."f£;      j CtS .i. ;J':. ti. j' 

i»!3S3:r>!fi    tiSJJJi ,4 

20 40 
X/D 

60 80 

Figure 5.4.  Centerline velocity 
decay for a plane jet 

. 1.1 i^.- -) -I- 



135 

from that used in the plane jet prediction, gives 0.119, a 45% larger 

spread rate than the experimental value. It should be remarked that in 

order to remedy the deficiency of the one-scale model in predicting the 

round jet flow field, many ad hoc proposals [58-60] were put forth. Pope 

[58] proposed that the constant C „ be modified as 
E2 

C^.=1.9 - 0.79X 

where 

4 e  3r  3r r 

Rodi [4] proposed a modification of the constant C ^ used in the s- 
£2 

equation. The correction is 

y,  dU   dU  0.2 
C^2 = l-92 - 0.0667[2^(|^| -^)] 

c 

Several other modifications have also been suggested, namely, by Morse 

[59] and McGuirk and Rodi [60]. 

The velocity profile for a round jet is shown in figure 5.5.  The 

initial conditions for U, k and e at the jet exit are the same as those 

of a plane jet.  It should be remarked that the abscissa is now y/x. The 

prediction of the one-scale model with the same constants as for plane 

jet gives incorrect spread rate as shown in figure 5.5. 
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The experimental data plotted in figure 5.5 are obtained for a wide 

range of x/D. Hetsroni's [32] measurements were upto a distance of 

x/D=35 while Vygnanski [33] measured up to x/D=40. These measurements 

are somewhat different from those of Shearer [34] et al. who collected 

data as far as 510 diameters downstream. Overall, these data points lall 

in one curve within a certain amount of scatter indicating that the mean 

flow reaches similarity some distance downstream of x/D=40. Tnis is 

further confirmed by the result predicted by the two-scale model where 

the result of the calculations are taken at x/D=75.  The predicted 

results agree very well with the experiment throughout the whole region, 

except near the edge of the outer region where the measurement may be 

affected by the intermittency between laminar and turbulent flow.  The 

fact that the centerline velocity predicted at x/D=75 agrees well with 

the data shows that the velocity decay along the axial line is 

satisfactory. 

Figure 5.6 gives the distribution of turbulent kinetic energy in a 

round jet. The calculations are taken at x/D=75.  From this figure, it 

is clear that there is a large variation near the center of the jet. 

Wygnanski's data, taken at x/D=40 only, indicates a value of k /U * of 
c  o 

0.1 which is higher than 0.08 measured by Shearer. The latter made 

measurements up to x/D of 510. This difference in the centerline kinetic 

energy could be due to the fact that turbulence quantities become self- 

preserving much after the mean quantities become self-similar.  The one- 

scale model due to its inability to predict correctly the spreading rate 
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predicts turbulent kinetic energy distribution further away from the 

experimental data.  Using the one-scale turbulence model without the 

modified constants, a maximum value of 0.095 is obtained at the 

centerline while the two-scale model predicts a value of 0.067. 

Although more experimental data are necessary to decide the level of 

turbulence intensity at the jet centerline, it seems that the two-scale 

model may predict a smaller turbulent intensity than the available data. 

Figure 5.7 shows the Reynolds stress distribution in a round jet. 

There is, once again, a difference of about 20?i in the maximum value of 

the Reynolds stress as obtained by Wygnanski and by Shearer. The former 

measured a peak value of 0.0168 while Shearer got a value of 0.020. The 

prediction of the one-scale model indicates a maximum Reynolds stress of 

0.025 whereas the value of 0.019 obtained by the two-scale model is 

closer to the experimental data of Shearer.  In general, the two-scale 

model predicts satisfactory results. 

Figure 5.8 gives the centerline velocity decay for a round jet using 

the one-scale and two-scale models along with the experimental data of 

Corssin [35], Wygnanski [33] and Shearer [34].  The difference in the 

result is due to the initial condition of the turbulent kinetic energy 

and the mean velocity profile.  Chen and Nikitopolous [23] showed that 

the initial potential core length is a strong fimction of the initial 

mean velocity profile and turbulent kinetic energy. For fixed turbulent 

intensity at 1.25% of the mean kinetic energy, the core length is about 

7.3 jet diameters with a flat exit velocity profile and 3.25 with a 



139 

0.12 

0.10- 

0.08 85^ 
• ^^ 

■  WYGNANSKI (X/D=40) 

D SHEARER (X/D=170) 

« SHEARER (X/D=340) 

O SHEARER (X/D=510) 

ONE-SCALE 

Figure 5.6.  k-profile for a round jet 



140 

0.025-1 
; 

0.020- 

0.015- 

>" 
3 

0.010 

0.005- 

l/o\ S 

/ 

0.000-f 
0.0 

a .\ 

\ 

(B 

m WYGNANSKI (X/D=60) 

D  WYGNANSKI (X/D=70) 

• SHEARER (X/D=170) 

O SHEARER (X/D=340) 

A SHEARER (X/D=510) 

ONE-SCALE  

TWO-SCALE 

D 

D 'v 
0.1 0.2 

Y/X 
0.3 0.4 

Figure 5.7.  Reynolds stress for a round jet 



141 

triangular exit velocity profile.  In the present calculation, a 

turbulent intensity of 6?; and the exit mean velocity profile given by 

^-Uj^exp(-y2) 

was used. The prediction of the two-scale turbulence model indicates a 

core length of about 5 diameters which agrees with the measured core 

length. 

5.4 Plane wake 

The initial conditions used in the calculations of the plane wake are 

k=0.008Uj.2Sin[ 1.57(1 - y/6)'] 

E=0.09k^"V5 

where U^. is the free stream velocity and 6 is the boundary layer 

thickness at the beginning of the wake flow. Most of the existing 

turbulence models used in the calculation of turbulent flows do not 

accurately predict some of the flow parameters of turbulent wakes, in 

particular, the spread rate of the wake. This is, perhaps, due to the 

fact that the turbulent process in a wake involves complex interaction 

among turbulent diffusion, production and dissipation and also due to 

the fact that the flow in the far wake region is not fully turbulent. As 

shown in table 5.1 , the one-scale model underpredicts the spreading 

rate by about 30%.  The measured spreading rate, defined as 
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S = — —^ 
w dx 
o 

is 0.098 while the one-scale model gives 0.068.  On the other hand, the 

two-scale model predicts quite satisfactorily a spread rate of 0.0975. 

Figure 5.9 shows the asymptotic velocity profile in the far wake 

region where x/9=600.  The momentum thickness, S', is obtained from the 

velocity profile at the trailing edge.  The experimental result is that 

of Pot [39], taken at x/9=1000, which compares very well with the 

predicted profile of the two-scale model except at the edge of the wake. 

When the predicted velocity profile is plotted against y/y,, the one- 
2 

scale and two-scale turbulence models differ somewhat near the edge of 

the wake. However, it should be noted that the y, predicted by the one- 

scale model is 30% lower than experimental value. 

In figure 5.10, the Reynolds stress versus y/y, is shown for the far 

wake. The values calculated from the one-scale model differ considerably 

from that by the two-scale model and experiment.  Patel et al. [37] 

improved the one-scale turbulence model with the turbulent constants 

altered and by introducing the intermittency near the edge of the flow. 

Their result showed some improvement in the prediction.  However, it is 

emphasized that no modification of turbulent constants were needed for 

the two-scale turbulence model in predicting the wake flow. 

Figure 5.11 gives the center-line velocity defect in the near and far 

wake region. U^ and U^ are the free stream and centerline velocity 



1.2 

144 

o 

I 
Ui 

3 

0.8- 

0.6- 

0.4- 

0.2- 

■  POT 

D ASYMPTOTIC 

ONE-SCALE 

TWO-SCALE 

0.5 1 

0.5*Y/Yo.5 
1.5 

Figure 5.9.  Asymptotic velocity- 
profile in a far wake 



0.06-T 

145 

0.05- 

■ POT 

□ ASYMPTOTIC 

ONE-SCALE 

TWO-SCALE 

D 
*  D DC 

0.5*Y/Y 
1.5 

0.5 

Figure 5.10.  Reynolds stress in a far wake 



146 

respectively.  The results of both the one-scale and two-scale models 

are in good agreement with experimental results. 

5.5  Plane mixing layer 

The accurate prediction of mixing layer flow depends heavily on the 

initial conditions since the mixing flow resembles the initial 

development of a jet. . 

Figure 5.12 shows the velocity profile in a mixing layer obtained at 

x/D=5. Here D is the width of the jet exit. The calculations were done 

from x/D=0 to x/D=5 with the initial conditions for U and k as 

U=0 for y>0 

U=U for y<0 

k=0.01Uj2exp(-y*) for y<0 

where Uj is the initial velocity of the mixing flow.  The calculations 

are presented only for the two-scale model since one-scale model 

predicts satisfactorily the gross properties.  The two-scale model also 

predicts velocity distribution which is in good agreement with 

experimental results. The kinetic energy profile obtained by various 

experiments [41-46] varies considerably as shown in figure 5.13. 

However, the model generally predicts satisfactory results. 
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5.6 Jets flowing into moving surrounding 

In this section, jet flows into moving surroundings are considered 

where the jet exit velocity is larger than the free-stream velocity.  As 

mentioned in chapter IV, jets flowing into moving surrounding are c ly 

approximately self-similar. The flow field can be approximately divided 

into two regions, namely, strong jet region where the strain rate is 

large and a weak region where the strain rate falls from relatively 

large to small values.  This weak, jet region is an important test case 

for turbulence models, since turbulence process in this region of weak 

strain rate involves not only turbulent production and dissipation but 

also significant amount of turbulent diffusion. Therefore, unless the 

turbulent transport equations are properly modelled, the predictability 

may not be accurate. The initial conditions for the jet are 

U=U^exp(-y^) 

k=0.06Uj^^exp(-y2) 

and for the free stream are 

U=U =Constant 

K=0 
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5.6.1 Plane jet 

Experimental data of Bradbury and Riley [30] shows that except near 

the nozzle exit, the velocity profiles collapse into a single curve 

independent of the ratio 

>=    "^ 
0' - U 
E   o 

where U  is the free stream velocity and U  is the centerline velocitv. c o ' 

With U^ varying in the axial coordinate, the ratio, X, may be used to 

denote various distances downstream and to indicate when self-similarity 

is achieved.  Figure 5.14 shows the velocity profiles for a plane jet. 

The calculations of the one-scale and two-scale models are shown along 

with the experimental data.  Since the flow far downstream becomes 

approximately self-similar, calculations are shown for only one location 

x/D=75. The ratio, U^/Ug, of jet exit velocity to free stream velocity 

used in the calculation was 3.3.  The results of the two models show 

good agreement with the experimental data of Bradbury and Riley [30]. 

In figure 5.15, the decay of centerline velocity of the plane jet is 

shown.  The predicted centerline velocity by the two-scale model gives 

slightly slower decay rate.  Nevertheless, the calculations tend to 

reach experimental value far downstream. 
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5.6.2 Round jet 

For a round jet, the predictions of the one-scale and two-scale 

models are compared with the experimental result of Antonia and Bilger 

[49] as shown in figure 5.16.  The experimental data collapse into a 

single curve for all distances beyond x/D=38. Hence, the velocity- 

profile at x/D=7S is shown where the flow is approximately self-similar. 

The ratio of the nozzle velocity U., to the free stream velocity U 
N E 

chosen is 3.3.  There is a good agreement between the experimental 

■ U ■'        f 
result and the two turbulence models. 'M' f 

^ i 

\    The Reynolds stress is shown in figure 5.17 for x/D=75.  According to 

the experimental data of Antonio and Bilger, the stress at x/D=248 is 

larger than that at x/D=152. This indicates that the turbulence 

quantities have not reached self-similarity.  The calculations of the 

one-scale and two-scale models are shown for x/D of 75. Around y/y, of 

0.8, there is some difference between the two models and the 

experimental data. The predicted Reynolds stress in general follows the 

trend of the experiment but gives smaller magnitude particularly near 

the peak or y/y,=0.8. The cause of large value of measured Reynolds 

stress probably is due to the initial conditions where in the experiment 

the nozzle of the round jet has a finite thickness while it is assumed 

infinitely thin in the computation. Furthermore, an increase in the 

initial turbulent kinetic energy for the calculation can not only cause 

steeper decay of centerline velocity than that shown in figure 5.15 but 

also increase the predicted Reynolds stress in figure 5.17. 
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5.7  Sensitivity of the Coefficients 

This section gives a brief discussion of the sensitivity of the 

coefficients C  and C  in the E-equation.  From homogeneous shear fl 

and flow behind a grid turbulence, these coefficients were foiind to be 

18.90/(Re)  for the two-scale second order closure model of uTu!, k and 
1 J 

E.  However, the coefficient C  was modified to be 17.50/(Re)* for the 

two-scale k-E model.  This modification was made because, in the 

calibration of C  and C  , the diffusion terms in k and E eauations for 

both homogeneous and grid turbulence flows were neglected which is not 

the case.  The values C =17.5/(Re)* and C ^=18.9/(Re)^ were obtained by 

solving the plane jet flow where the turbulent diffusion term is 

increased in the calculation. 

It is known that flow prediction based on the one-scale turbulence 

model is very sensitive to the C  coefficient which has a value between 

1.90 and 1.92. Any value outside this range may cause the prediction to 

change significantly. On the other hand, for computation based on the 

two-scale turbulence model, C  may be changed from 11.90/(Re)^ to 

18.90/(Re)* and C^^ from 10.50/(Re)^ to 17.50/(Re)^, the prediction is 

quite stable and satisfactory as long as the same difference of 

1.4/(Re)* between C , and C ^ is kept. 
£ 1      E2 

Table 5.2 shows the spreading rate for a plane jet for various values 

of ^El ^^^ ^e2'  "^^^^ calculations were done for Reynolds number 

ranging from 12,000 to 120,000. 
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Table 5.2 

Sensitivity of spreading rate on 
the coefficients 

Re Cg^/CRe)^ Cg2/(Re)^ S 

12,000 17.50 18.90 0.1017 

tt 
15.50 16.90 0.1146 

.    ;" 10.50 11.90 0.1200 

24,000 17.50 18.90 0.1000 

120,000 17.50 18.90 0.1009 

The spreading rate varies from 0.1 to 0.12 for a change in C  from 

10.50/(Re) to 18.90/(Re)* at a Reynolds number of 12,000.  Hence it can 

be concluded that there is a slight change in S even with an appreciable 

change in the coefficients. This difference can be attributed more to 

the GENMIX program than to the physical phenomenon. 

The effect of the Reynolds number is also shown in table 5.2 for a 

plane jet flow. The values of C , and C „ used are 17.50 and 18.90 
cl     e2 

respectively. The Reynolds number is changed from 10 to 10 .  The 

change in the spreading rate is again very small. Thus, it can be said 

that a change in Reynolds number does not affect the overall structure 

of the jet. It should be remarked, however, that by changing the 

coefficients and keeping Reynolds number fixed is effectively the same 

as keeping the coefficients fixed and changing Reynolds number. Since 

there is no set pattern in the value of S, the difference is due to the 

numerical problem. 



.  , .. 159 

To further study the effect of Reynolds number, the kinetic energy is 

calculated for various Reynolds numbers. Figure 5.18 showsthat there is 

very little difference in the kinetic energy profile at different 

Reynolds numbers.  The difference shown in this figure may be due to the 

numerical diffusion in the program which calculates the flow using 

dimensional quantities. , 
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CHAPTER VI 

PREDICTION OF TURBULENT BUOYANT JETS 

This chapter shows the predictions of the two-scale turbulence model 

for buoyant jets based on equations (3.31), (3.32), (3.33), (3.35) and 

(3.36) and that of the one-scale model based on equations (3.31), 

(3.32), (3.33), (3.35) and (1.10).  As mentioned in chapter IV, the 

amount of experimental data available for turbulent transport quantities 

in buoyant jets is scarce and insufficient to test the accuracy of the 

turbulence model.  Hence, most of the comparison between one-scale 

model, two-scale model and experimental data is confined to mean flow 

quantities.  The velocity and temperature decay along the jet axis are 

shown for various Froude numbers.  In the present study, Froude number 

is defined as 

P u 
F =    ° ° 

g(p^ - Pa)D 

where 

pQ=fluid density at jet exit 

P =ambient fluid density 

U^=jet exit velocity 

D =diaraeter or width of jet 



Some of the measurements of normal stress u^ and the kinetic energy are 

also presented, whenever available. 

6.1  Bouyant plane jet 

The exit and initial conditions for plane buoyant jets are the same 

as that of nonbuoyant jets, namely 

U=U^.exp(-y=^) 

k=0.06Uj^^exp(-y^) 

E=0.09k^"VH 

For the temperature, T and fluctuating temperature, 9^, the jet exit 

conditions were set as 

F=0.06(T  - T )^exp(-y^) 
O       a 

The calculation procedure is carried out similar to that for the 

nonbuoyant jet except that additional equations for T and 8^ are 

included. 

The most significant characteristic to be predicted by the turbulence 

model is the temperature or velocity rate of spread for buoyant jets. 

These parameters are defined as 

s =5iu 
^V      dx 
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and 

S =5^ 
^T  dx 

The recommended experimental value of the spread rate of velocity is 

0.12 while that for temperature is 0.13. In the present study, the 

spread rates predicted by the two-scale turbulence model are 0.11 for 

velocity and 0.135 for temperature.  The one-scale turbulence model 

predicted values of 0.11 and 0.116 for velocity and temperature 

spreading rates.  In comparison, the two-scale turbulence model seems to 

give better prediction. 

The centerline velocity has been found to be a function of the 

distance x.  The dimensionless grouping for velocity 

U      n -'^'^ 

'N    ''a 

versus distance 

°     Pa 

was first derived by Chen and Rodi [50]. In these dimensionless plots, 

Chen and Rodi showed that all centerline velocity decay of turbulent 

buoyant jets can be collapsed into a single curve.  The buoyant jet flow 

can be divided into three different regions, namely, nonbuoyant, 
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intermediate and plume region.  From experimental data the following 

correlations were obtained. For the nonbuoyant region, 

N     '^a 
for 

0 < h'^/^i-^) <  0.5 

In the intermediate region, the relation is 

"c       -1/3 "o ^/^2 X "^/"^ 
IT = 2.85F '/\f) (|) 
N Ta 

for 

0.5 £ iF"2/^^)"   :S 5 

and in the plume region, 

for 

Y .2/3 PQ -1/3 
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where F is the densimetric Froude number.  In this investigation, a 

couple of cases were selected for calculation. The Froude numbers used 

were 6 and 24 which lie between the extreme cases of F=0 for a pure 

plume and F=oc for a pure jet. 

Figure 6.1 presents the velocity profiles of the one-scale and the 

two-scale turbulence models in a plane buoyant jet for Froude numbers of 

6.0 and 24.  The experimental data of Bradbury [30] for a plane jet and 

of Rouse [52] for a pure plume are included for comparison. The 

calculated results were obtained for x/D=40. There is a good agreement 

between experiment and calculations. 

Figure 6.2 gives the turbulent quantities, namely k and u^ as 

measured by Kotsovinos [53] and Bradbury [25].  The kinetic energy at 

the centerline for a pure jet is 0.064 whereas the normal stress for a 

pure plume is 0.14. Increase in the kinetic energy or normal stress for 

the plume can be explained by the existence of positive buoyant force 

which promotes the generation of turbulence. In other words, g(u9/T ) in 

equation (3.35) is positive.  The calculations of the two-scale model 

and one-scale model are plotted for Froude numbers of 6.0 and 24.  These 

profiles fall within the extreme cases of a pure jet and a pure plume. 

Thus the prediction can be considered to be satisfactory. 

In figure 6.3, the temperature profile is shown for Froude numbers of 

6.0 and 24 as obtained by the one-scale and two-scale turbulence models. 

These results are compared with the experimental data of Van der Hegge 



[31] for a pure jet and that of Rouse et al. [51] for a pure plume. 

Again the predicted results for buoyant jets fall within the two 

envelops of pure jet and pure plume as one would expect. 

The Reynolds stress for a plane buoyant jet is shown in figure 6V , 

The one-scale and the two-scale model results are shown for comparison. 

The experimental result of Ramaprian and Chandrasekhara [52] is shown 

for Froude number of 2.4. 

6.2 Buovant round iet 

The predicted spread rates for velocity and temperature in buoyant 

round jets using the two-scale turbulence model are 0.1 and 0.115 

respectively. The one-scale model gives these parameters as 0.12 and 

0.11. The experimental values of the velocity and thermal spreading 

rates are 0.112 and 0.1 indicating that the two models predict 

satisfactorily the gross parameters. i - 

' ■•■ 

Figure 6.5 shows the velocity profile of a buoyant round jet. The 

two-scale model calculations are shown for the two cases of F=6 and F=24 

while the one-scale model prediction is shown for F=6.  The experimental 

data of Rodi [4] and George et al. [54] are also shown for pure jet and 

pure plume respectively.  There is a good agreement between the 

predicted result and experimental data. i    , 

Figure 6.6 gives the temperature profile of a buoyant round jet. The 

pure jet profile is that of Rodi while the pure plume temperature 
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profile is that of George [54]. The calculations of the two-scale model 

and the one-scale model show temperature profiles closer to the pure 

plume than pure jet. 

In figure 6.7, the kinetic energy and normal stress of the buoyant 

jet is shown. The pure plume data is that of George and the pure jet 

data is that of Rodi. The one-scale and two-scale results are shown for 

comparison.  As in the case of the nonbuoyant jets the prediction of 

kinetic energy by the one-scale model is higher than that by the two- 

scale model. 

6.3  Concluding remarks 

Though the comparison between prediction and experiment was not 

extensive, it can be said that the results of the two-scale turbulence 

model are satisfactory.  More rigorous comparisons are necessary which 

can be done only with better and complete set of experimental data. 

Further, the effect of reducing the partial differential equations for 

8^ and Sg into algebraic equations need to be studied. Since the 

equation for Eg was replaced by a relation suggested by Launder in 

equation (3.28a), the influence of the small time scales on the buoyant 

jets could not be studied. 
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CHAPTER VII 

PREDICTION OF RECIRCULATING FLOWS 

In the present investigation the emphasis is placed on prediction of 

turbulent free shear flows. This is because the mean velocity field of 

turbulent free shear flows is determined by the Reynolds stress and not 

by the pressure force which is likely to be a dominant force in more 

complex separate flows.  Therefore, any turbulence model for Reynolds 

stress, turbulent kinetic energy or dissipation of turbulent kinetic 

energy can be better tested and verified by its capability of prediction 

without the action of the pressure force. In addition, prediction of 

turbulent free shear flow does not have the complexity of the near wall 

turbulence. 

In the previous chapters, the two-scale turbulence model has been 

tested and verified for its prediction capability in turbulent free 

shear flows. In this chapter, the two-scale turbulence model is used to 

predict turbulent separated flows.  Results are shown and compared with 

those obtained by the one-scale k-E model for two different flows, 

namely, flow past a backward facing step and flow through an obstacle. 

7.1 Flow past a backward facing step 

The first case of recirculating flow chosen is the flow past a 



backward facing step. This is chosen because sufficient experimental 

data is available including the mean velocity profiles, separation 

length and some turbulent quantities. Stevenson et al. [60] used laser 

velocimetery technique to measure mean and turbulent quantities.  Eacon 

and Johnston [61] reviewed several other measurements of backward facing 

step for the 1980 Stanford Conference meeting. 

The flow domain which was measured by Stevenson et al.  [60] and a 

portion of the grid distribution near the step are shown in figure 7.1. 

The same domain is used in the calculation using the one-scale and two- 

scale turbulence models.  The height of the step is H and the distance 

from the step to the upper wall is also H. In the calculation, the 

boundary or entry conditions were set at a distance of 0.02H upstream of 

the step where experimental data is available.  The exit conditions were 

set at 12 step heights downstream with the boundary conditions also from 

experiment.  Near the wall and the step, the grid distribution is 

nonuniform with more nodes in the vicinity of the walls where the 

gradient of dependent quantities is steep.  The smallest grid size is 

about 0.02H while the largest spacing is 2.OH.  The grid system for the 

computational domain has 30 by 17 nodes. 

The governing equations for turbulent flow were derived in.chapter 

II. These equations are written here once again. The mean flow equations 
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au. 

1 

mi 

DU. ap        a^u.        auTir. 
—1= + ^ 1 LU (7.2) 
Dt pax.       ax.ax.     ax. 

1 j    j        j 

To complete the closure problem, the Reynolds stress are written using 

the eddy viscosity hypothesis to be 

.2 au,  au. ^2  .v..     .w 

-u.u. = C - [-—■  + -—"-l - ■?k6 . . (7.3") 
1 J,   V E  ax.   ax.-'   3  ii ^  ^ 

The turbulent quantities k and e are additional unknowns. The k equation 

is modelled as 

Dk _ a ._ k^ak ^ ak ,    ^"i 
Di - aTTf^k zlT^ ^ar:^ " ^^£ a^ " ^ (7.4) 

The E-equation based on one-scale model is 

DE   a  ,^ k^ae        -     ^" 
Dt  ax, ̂ M ^^   -  '^Zl i—il^  ■  '^.2 i ('-5' 

with C^, C^^ and C^^ ^^ 0.15, 1.435 and 1.92.  Based on the two-scale 

concept the e-equation is 

Tt = fct^E fIJ; ^ -li-3 ■ ^Ei^^/^^Vj ir - c,2(^/-)^^ (7-6) 
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where C^ , C^^ and C  are 2.00, 17. 50/(Re)' and 18 . 90/(Re) "^. 

The numerical method used for solving the differential equations is 

the Finite-analytic method developed by Chen et al. [62] [63]. The 

calculations were carried by the computer program (FANS-1 Finite- 

Analytic solution of Navier-Stokes equations) developed by 

Sheikholeslami [64].  This program incorporates the SIMPLER algorithm 

suggested by Patankar [55].  The wall function [64] is used for the near 

wall velocity and turbulent conditions.  Tlie velocity profile at the 

inlet and outlet were specified from the data of Stevenson et al. [60]. 

The kinetic energy profile at the inlet is about 3?o of the mean velocity 

squared.  The dissipation function e at the inlet is calculated from the 

turbulent kinetic energy using the relation 

1 • s 

e = 0.09| 

At the outlet, both the turbulent kinetic energy and its dissipation 

function are assumed to be fully developed, i.e. 

^ _ Q  and  ae _ - 
3x 3x 

The Reynolds number based on the mean inlet velocity and step height H 

is 50,000. 

In figure 7.2, the contour plot of the streamlines predicted by the 

one-scale and the two-scale turbulence model are shown. The time step 
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used in the calculation was 0.2 and the convergence criterion between 

the solutions of two consecutive time steps was set at 0.0001 for 

velocities and 0.001 for pressure. The computational time on Prime 850 

computer for both one-scale and two-scale model prediction was 60 

minutes of CPU time. From figure 7.2, it can be seen that the length or 

separation using the two-scale model is about 7 times the step height 

whereas the one-scale model predicts a separation length of about 5 step 

heights.  Since experimental data shows a separation length of about 7 

step heights, the one-scale seems to underpredict the reattachment 

length.  The reason for this is that the one-scale turbulence model in 

general predicts a larger turbulent kinetic energy and hence larger 

turbulent eddy viscosity for flow after a step. This causes greater 

mixing or momentiun transfer resulting in a smaller separation zone. 

Figure 7.3 gives horizontal velocity profiles predicted by the one- 

scale and the two-scale turbulence models at x/H=4.1 where the flow is 

separated and has a region of reverse flow.  It can be seen that the 

two-scale model predicts a fuller velocity profile in the mid-channel 

and the flow is separated near the lower wall which is closer to 

measured values.  The one-scale model predicts much smaller reverse flow 

than the experimental results of Stevenson et al. [60].  In figure 7.4, 

the velocity profiles at x/H=7.1 are given. The comparison again shows 

that a fuller velocity profile is predicted by the two-scale model in 

the mid-channel seems to have better agreement with experiment. 
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The turbulent kinetic energy profiles at x/H=7.1 and 9.1 are shown in 

figures 7.5 and 7.6. The results of the one and two-scale models are 

presented along with the experimental results.  Comparison with measured 

data reveals that both models predict correctly the general trend of 

distribution of turbulent kinetic energy and is only in fair agreement 

with experimental data.  It should be remarked that the peak turbulent 

kinetic energy predicted by the two-scale model is slightly smaller in 

magnitude than that predicted by the one-scale model. 

Figure 7.7 presents the shear stress at x/H=9.1 for the two models. 

Both models predict correctly the location of the maximum shear stress 

which is found from the experimental data to be at y/H=0.75 from the 

bottom wall. Both models predict larger negative stress -u.u. with the 

two-scale model predicting a better overall trend. 

7.2 Flow past an obstacle 

The second case considered in this chapter is the flow past an 

extended rectangular plate in a two-dimensional channel.  Figure 7.8 

shows the stretched geometry of the flow domain along with the grid 

distribution for flow past a rectangular plate with a height of H and a 

thickness also of H.  The flow domain has 41 by 14 nodes.  The same 

numerical procedure and the method of solution is used as that for the 

backward facing step.  The calculation is performed from x/H=-ll to 

x/H=45. The velocity profiles at the inlet and outlet are the one- 

seventh power law. The kinetic energy at the inlet is specified using 
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the experimental data of Durst et al. [65].  The dissipation at the 

inlet is specified using the relation 

^ : -    r  .'  I  ■      .1.;  - ■ 
At the outlet, the fully developed profiles for k and e are assumed. A 

portion of the streamline contour near the obstacle predicted by the 

one-scale and the two-scale model for Reynolds number of 17,000 based on 

H and mean velocity U is shown in figure 7.9.  The two-scale model 

predicts a reattachment zone of lOH.  The one-scale model, however. 

predicts a length of 4H.  The experimental results of Durst et al. [65] 

for Re=17,Q00 show a separation length of about 7H.  This is in closer 

agreement with the lOH predicted by the two-scale model. 

Figures 7.10 and 7.11 show the velocity profiles predicted by the two 

models at x/H=4.1 and x/H=7.1 respectively. The two-scale turbulence 

model has a general tendency to predict a flatter velocity profile in 

the separation zone as shown in figure 7.10 which is in better agreement 

with the experimental data. Figure 7.11 shows that the two-scale model 

predicts separation as indicated by the experiment where the one-scale 

predicts no separation.  In figures 7.12 and 7.13, the kinetic energy 

profiles are shown at the locations x/H=4.1 and x/H=7.1. Again, the two- 

scale turbulence model predicts a smaller kinetic energy profile. 

7.3 Concluding remarks 

The results presented above are two cases of recirculating flows 

predicted by the turbulence models.  Comparison with experiment shows 
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Figure 7.9.  Streamlines using both one- 
scale and two-scale turbulence model 
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that the two-scale turbulent model indeed predicts better flow field for 

the two dimensional separation flow than the one-scale model.  More work 

is needed to verify the prediction capability of the two-scale 

turbulence model in other flow configurations.  Grid dependence studies, 

as well as improvement in the wall function, are necessary for better 

prediction of turbulent quantities. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

8 ■ 1 Conclusions 

In this investigation, a new two-scale turbulence model is developed. 

The two turbulent scales are based on a large energy containing scale 

(k,E) and a small energy dissipating scale (v.s). The (k,e) scale has 

been used in previous turbulence models. The (v,£) scale, which is known 

as the Kolmogorov scale, is used in the present investigation to model 

the destruction term of the s-equation. 

The two-scale turbulence model shows that the E-equation needs to 

have the influence of viscosity since viscosity is the main cause of 

dissipation.  In general, the two-scale turbulence model predicts a 

lower kinetic energy than the one-scale model. 

Calculations of free shear flows in Chapters V and VI and 

recirculating flows in Chapter VII indicate that the two-scale k-e 

turbulence model gives significant improvement over the one-scale 

turbulence model.  It is important to point out that unlike the one- 

scale turbulence model, the two-scale turbulence model does not require 

modification of turbulent constants in predicting plane or round 

jets,mixing layer flows, plane and round wakes, buoyant jets, flow past 
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a backward facing step and flow past a channel obstacle.  Therefore, the 

predictability of the two-scale turbulence model is demonstrated. 

Since the present study relied on the existing solution techniques, 

it should be mentioned that proper understanding of the numerical scheme 

is important in solving the flow problem.  During the study it was found 

that it is necessary to choose a suitable marching step in the modified 

Patankar - Spalding algorithm in order to obtain an accurately converged 

solution. Also, it should be remarked that the initial conditions affect 

the solution to some extent particularly near the inlet or initial zone. 

Hence, it was necessary to carefully evaluate experimental data before 

comparisons between either various experiments or experiment and 

prediction are made. 

Further, during the course of this study, it was found that though 

experimental data was abundant, many sets of data were not complete for 

most flows. For example, numerous results were given at various sections 

of the flow field, but initial conditions particularly for turbulent 

quantities were not mentioned. In some instances, only one component of 

normal stress was available for comparison instead of the turbulent 

kinetic energy and shear stress.  Finally, since the main difference 

between the two-scale and the one-scale turbulence model is in the t- 

equation, it would be of interest to compare the dissipation of 

turbulent kinetic energy predicted by the two models.  However, there 

were almost no experimental measurements of the rate of dissipation of 

turbulent kinetic energy. 
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8.2 Recommendation for future snudy 

From the present investigation several issues still require further 

study or clarification. They are explained below. 

1. In chapter II, it was mentioned that the turbulent structure in a 

flow is a fimction of the Reynolds number, which is normally 

based on the characteristic velocity and length of the problem. 

However, in most experimental investigations it is the turbulent 

Reynolds number based on the Taylor microscale that is used. The 

correlation between the problem or mean Reynolds number and 

Taylor microscale Reynolds numbers is not known. Further study is 

necessary in turbulent spectral analysis to obtain such a 

relation.  It is worthwhile to see how the turbulent structure 

changes directly with a change in the Reynolds number of the 

problem.  This may verify the validity of the turbulent model for 

a range of Reynolds numbers. 

2. In chapter II it was mentioned that the spectral analysis was 

done for isotropic flows only. At present, there is no work 

available for analysis of nonisotropic flows. Such an 

investigation, if possible, could help in understanding the 

energy transfer process and provide a better turbulence model. 

3. Various aspects of the computation for turbulent flows need to be 

considered in order to improve the two-scale turbulence model. 

For example, most of the results shown in Chapters V, VI and VII 

are either for mean velocity profile, centerline velocity, 

turbulent kinetic energy and shear stress.  It is desirable to 
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further investigate the prediction of the two-scale model for 

other flow parameters such as entrainment, normal stresses and 

for flows involving secondary motion and three dimensional 

configuration. 

4.  Further, the model needs to be extended to compressible flows and 

other flows with strong curvature. 
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. APPENDIX A 

COMPUTER PROGRAM GENMIX 

'i&aiz:^ 1 

INSERT SYSCOM>ERRD.INS.FTN  .,..,,\. -  ■...,. :,^ .-;■.;-, V,^-.-. ..,.,„,,.; 
INSERT SYSCOM>KEYS. INS. FTN    ' "^ '   .v..--^. 
INSERT SYSCOM>KEYS.INS.FTN 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
REAL-8 LAB 
DIMENSION 0UT(83),DIFK(83),DIST(83),C0NK(83),F4V(83) 
1,DXRME(40),XUU(40),YYH(40),YYHT(40),XLONG(100),FLONG(8,100) 
2 ,FEI(10G) 
DIMENSION XPLOT(100),YPLOT(10,100),YAXES(20),SYMBOL(20) 
DIMENSION FLUX(7),DFI(7),DFE(7),AJID(7),AJED(7) 
DIMENSION YDT(83),UDT(83),TDT(83),CDT(83),FKDT(83),FEMDT(83) 
DIMENSION FBI(7),FBE(7),EPS(83),FK3E2(83),FK4E3(83) 
DIMENSION SYMBL1(5),SYMBL2(4) 
COMMON/COMA/A(83),AJE(7),AJI(7).B(83),C(83),CSALFA,D(83),DPDX(83) , 

1 DX,EMU(83),F(7,83),FS(5,83),IAX,IEND,IFIN,INDE(7),INDI(7),IOUT, 
2 ISTEP,ITEST,IUTRAP,JS,JSV,JV,JY,KEX,KIN,KRAD,N,ND2,NF,NOVEL,NPl, 
3 NP2,NP3,0M(83),0MD(83),P(83),PEI,PR(7),PREF(7,83),PSIE,PSII,R(83) 
4,RHO(83),RME,RMI,RU(83),SD(7,83),SU(7,83),TAUE,TAUI,U(83),XD,XU, 
5Y(83),YE,YI,ENU(83),NDEQ,BPI,BPE,DK1(83),DK2(83),EDK1(83),EDK2(83) 
6,US(83),FACTOR 
COMMON/COMB/ARRCON,EWALL,H,HFU,INERT,MASSTR,MODEL,OXDFU,PREEXP, 

1 PRESS,UBAR.AK,RE,FR,ALMG,UFAC 
C0MM0N/C0MC/ENUT(83),ENUTDN(83),DUDY(83),DUDDY(83),DTDY(83), 

1 DTDDY(83),PR0K(83),BUPR0K(83),ENUPR(83),PREFI(7) 
2,CDFN(83),PKDEP(83),CVFN(83),UV(83).W(83),UT(83), 
3 VT(83),TT(83),PTDET(83),PROT(83),DIFTT(83),SUUK(83),SUUE(83) 
4 ,SUUT(83),FUUK(83),FUUE(83),FUUT(83) 
C0MM0N/C0NST/IZT,CMUF,GDM,CDIS,C1,C2,NCM,AL1,ALD,CR1,CRD,BU0Y, 

1 C1T,C1K,C2K,NIB,ENULIM,NBUPR0,CT,CE1,CE2,CT1,CC1,CC2,C2T,CSP,CE 
2 ,NPKDE,NPTDE,NALG,CAXIAL,PCLINR,LINEAR.LESSON,CE3,CM2,C2TM 
COMMON/AUXL/RENO,VISMIX,RHOA,TA,COEFEP,COEFED,EPSPK,EPSDT 
DATA Vl/'TEST l'/,V2/'U'/,V3/•F(1,I)'/.V4/•F(2,I)'/,V5/•F(3,I)'/ 
DATA V6,V7,V8,V9,V10/'TEST2','FS(1,I)','FS(2,I)','FS(3,I)','RH0(I) 

1  '/ 
DATA V11,V12,V13,V14,V15/'TEST3','Y(I)','RCI)','RU(I)','TEST4'/ 
DATA V16,V17,V18,V19,V20/'EMU(I)','OMEGA','TESTS','Rl YS','VEL'/ 
DATA V21,V22,V23,V24,V25 /'TEMP','T','RHO','KENGY','K'/ 
DATA V26,V27,V28,V29,V30/'DISSK','D','SU(I)','ENUTDN','ENU'/ 
DATA V31,V32,V33,V34,V35/'ENUT','UV','VV','DIFTT' ,'DIST'/ 
DATA V36,V37,V38,V39,V40/'UT','VT','DKDEP','PTDET*,'CD FN'/ 
DATA V41,V42,V43,V44,V45/'CV FN','n-AGL','TT-DEQ','TT','E' / 
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DATA V46,V47,V48,V49,V50/"DUDDY','DTDDY','CONK','DIFK','PROK'/ 
DATA V51,V52,V53,V54,V55/'BUPR0K','PREFTT','PREFEP' 
1,'PREF-K','PREF-T'/ 
DATA SYMBL1/1HU,1HT,1HK,1HD,1HE/ .-.,„.... 
DATA SYMBL2/1HU,1HT,1HA,1HF/ 

C 

CALL SR(READ,'IN?1',4,7,TYPE,CODE) 
CALL SR(WRIT,'PSP1',4,2,TYPE,C0DE)      ' 
CALL SR(WRIT,'PSP3',4,3,TYPE,CODE) 

C 
C    -- - - _ 

CHAPTERlllllllllllUiiil PARAMETERS AND CONTROL INDICES  11111111111111 
C      NSTAT= NO. OF STEPS BETWEEN OUTPUT OF SINGLE VARIABLES. 
C      NPROF= NO. OF STEPS BETWEEN OUTPUT OF ARRAY VARIABLES. 
C      NPLOT= NO. OF STEPS BETWEEN OUTPUT OF PLOT. 
C      IN THIS EXAMPLE, PLOT IS CALLED AT END OF INTEGRATION ONLY 

NSTAT=100 
NPROF=1000 
NPL0T=20000 

C     M0DEL=1 ONE-SCALE K-E MODEL 
C     M0DEL=2 TWO-SCALE K-E MODEL 

M0DEL=1 
C     IDAT=0=NO DATA READ IN,  =1= BUILT IN PROFILE 

IDAT=0 

C  ILONG =N0 OF STEPS BETWEEN OUTPUT IN LONGITUDINAL DIRECTION 
ILONG=300 

C      ISTTRAT=1=STRATIFCATION,=0=NO STRATIFICATION 
ISTRAT=0 

C      RATrD=RATE OF TD VARIATION IN X DIRECTION (DEG.C/METER)-■ 
RATTD=2.0 

C   LESSON = 1 = CE1*T0TAL PROK IN EP EQ.  
C   LESSON = 2 = CE1*SHEAR PROK AND CE3 * BUOY PROD.IN EP EQ   

LESS0N=2 
C NBY=1 WHEN BUOYANT FORCE IS INCLUDED  

2  NBY=1 
7   KRAD=0 

C 

CHAPTER222222222222222222222222 GRID AND GEOMETRY 22222222222222222222 

C S. I. UNITS 
L=l 

C N=NO OF GRID POINTS 
N=40 
YN0Z=1. 
XULAST=10.0E+0 
LASTEP=20000 

C    IF(KRAD.EQ.1)LASTEP=3500 
C    IF(KRAD.EQ.0)LASTEP=2100 

XU=l.E-30 
XP=.99*XU 
XOUT=0. 
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XEND=0. 
C   FRA = PERCENTAGE OF FORWARD MARCHING, _X = FRA '^ _Y 

FRA=0.005 
C FACTOR FOR LINEARIZATION OF SOURCE TERiM IN E-EQUATION 

FACTOR=1.0 
ULIM=.01 
ENULIM=l.E+30 
TAN=0.01 ■■ 
PEILIM=0.01 
KIN=3 
KEX=2 
CSALFA=1. 

C      R(l) ADJUSTMENT MADE JUST BEFORE CALL STRIDE(l). 
C     STRIDE4 STRIDE4 STRIDE4 STRIDE4 

CALL STRIDE(4) 
IAX=0 
IF(XEND.LE.O.) IEND=0 
IF (XOUT.LE.O.) IOUT=0 

C      CHANGE lEND, lAX AND lOOT, IF NECESSARY. 
C 
c   -  
CHAPTER333333333333333333333333 DEPENDENT VARIABLES SELECTION 33333333 
C    U(I)=VELOCITY 
C    F(1,I)=STAGNATION ENTHALPY 
C    F(2,I)=C0NCENTRATI0N OF FUEL 
C F(3,I)=C0NCENTRATI0N OF 0XIDANT-0XDFU*F(2,I)=PHI 
C    FS(1,I)=C0NCENTRATI0N OF OXIDANT 
C    FS(2,I)=TEMPERATURE 
C    FS(3,I)=C0NCENTRATI0N OF PRODUCT 
C    F(4,I)=KINETIC ENERGY OF TURBULENCE 
C    F(5,I)=DISSIPATI0N RATE OF KINDTIC ENERGY 
C    F(6.I)= THERMAL ENERGY OF TURBULENCE TT 
C    F(7.I)= DISS.RATE OF THERMAL ENERGY 
C  FL0NG(1,L)=MAXIMUM VELOCITY 
C  FL0NG(2,L)=AXIAL TEMPERATURE 
C  FL0NG(3,L)=ENTRAINMENT COEFFICIENT 
C  FEI(L)=BOUYANT FLUX INTEGRAL 
C     NDEQ=0=ENTHALPY AND CONCENTRATION EQUATION NOT SOLVED 
C     NDEQ=1=ENTHALPY EQUATION SOLVED 
C     NDEQ=2=ENTHALPY AND CONCENTRATION EQUATION SOLVED 

NDEQ=1 
NDEQP1=NDEQ+1 
NEQ=3+NDEQ 

C     NF=NO OF DEPENDENT VARIABLES TO BE SOLVED 
NF=6 

C NDX=NO OF X INTERVAL USED IN CALCULATE ENTRAINMENT COEFF. 
NDX=40 
NDXM1=NDX-1 

C    

CHAPTER44444444444444444444444444444444444444C0NSTANTS 4444444444444444 
C    CHAPTER 4A MATERIAL CONSTANTS 
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C                                     S.I. UNITS 
C GAS CONSTAT IN JOULE/KILOMOLE/DEG. K   

GASCON=8300. 
C SPECIFIC HEAT AT CONST. PRESS. IN JOULE/KG/DEG.K- 

CMIX=1100. 
C MOLECULAR WEIGHT IN KG/KILOMOLE  

WMIX=29. 
WA=29. 
WD=29. 
GAMMA=CMIX/(CMIX-GASCON/WMIX) 
VvT)GSCN=WMIX/GASCON 
VISMIX=1.0E-7 
PREEXP=1. ■       ' 

G 
IZT=20 

C 
C     CONSTANTS FOR TURBULENCE MODEL 

CV=.475 
C CONSTANTS FOR UT VT EQS  

C1T=3.2 
C2T=.5. 
C2TM=C2T 

C CONSTANTS FOR UV UU W EQS  
CC1=2.8 
CC2=0.47 ■ 
CM2=CC2 
CSP=0.9 
IF(MODEL.EQ.l) CSP=0.225 
CST=1.6 

C CONSTANT FOR TT EQUATION ' 
CT1=0.13 
CT=1.25 

C CONSTANTS FOR TURBULENT KINEMATIC VISCOSITY ■ 
CD=(1.-CC2)*CV/CC1 
PREFI(4)=1. 
PREFI(5)=1.3 
PREFI(6)=CD/CT1 
PREFI(7)=1. 
CDIS=CD 

42 DO 40 J=l,3 
PR(J)=.7 

40  PREFI(J)=(1.-CC2)*C1T/CC1 
BU0Y=FL0AT(NBY)''-9.81 

C 
C CONSTANTS FOR EP EQ  

CE=2.00 
CE1=17.50 
CE2=18.90 
CE3=CE1 
IF(MODEL.EQ.l) CE=0.15 
IF(MODEL.EQ.l) CE1=1.435 
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45 
43 

IF(MODEL.EQ.l) CE2=1.92 
C0EFEP=CE1 
C0EFED=CE2 
lvRITE(6,45) 
WRITE(6,43) CSP,CC1,CC2,C1T,C2T,CM2,CE1,CE2,CE3,CE,CT1,CT, 

1 FRA,C2TM 
F0RMAT(20X,' - CONSTANTS FOR TURBULENCE MODEL ---'/) 
FORMAT(4X,'CSP = 

1 4X,'C1T = 
2 4X,'CE1 = 
3 4X,'CE = 
4 4X,'FRA = 

,F10.5,5X,'CC1 = 
,F10.5,5X,'C2T = 
,F10.5,5X,'CE2 = 
,F10.5,5X,'CT1 = 
,F10.5,5X,'C2TM= 

,F10.5,5X,'CC2 =',F10.5,/ 
,F10.5,5X,'CM2 =',F10.5,/ 
,F10.5,5X,'CE3 =',F10.5,/ 
,F10.5,5X,'CT =',F10.5,/ 
,F10.5,5X/) 

CHAPTER555555555555555555555555555555555  INITIAL CONDITIONS 
C   SPECIFY RADIUS .VELOCITY ,TEMP. ETC 

RA=0. 
RB=0.  ■ 
RC=0. 
RD=0.065 
DIAD=2.*RD '   ' 
UA=1.5 
UB=UA 
UC=UA 
UD=0.0 
TA=315. 
TD=300.5                          .... 
TDD=TD 
TB=TA 
TC=TA 
NEMU=1 
EMUI=1. 
UREF=1. 
YIN=RB 
TWALL=299. 
PRESS=1.E5 
PDGSCN=PRESS/GASCON 
RHOA=PDGSCN*WA/TA 
RHOD=PDGSCN*WD/TD 

C   INITIAL LONGITUDINAL CONDITIONS    
DD=2.*RD 
XL0NG(1)=XU/DD 
FL0NG(1,1)=1. 
FL0NG(2,1)=1. 
FL0NG(3,1)=0.5 
FEI(1)=0. 

C   CALCULATE RE.FR GR RI  NUMBERS     
c 

SBG=9.81''--RATTD/TD 
BGDGD=RD"SBG/(9.81"(TA-TD)/TD) 
GUDGD=SBG"UA"*2. / ((9 . 81^^ (TA-TD)/TD) "*2 .) 
REN0=(RH0A"UA"2*RD)/(VISMIX*DSQRT(TA)) 

5555555555 
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FRNOS= (UA--"2--'-TA) / (9 . 81---2---RD" (TA-TD)) 
FRNO=DSQRT(FRNOS) 
GRN0=(9 . 81--'^ (TA-TD)^ (2"RD)^-^^3) / (TA^-- (VISMIX-"-DSQRT(TA) /RH0A)-'----^2) 
RICHN=DSQRT(GRNO)/RENO 

C 
WRITE(6,48) RENO,FRNOS,FRNO,GRNO,RICHN,BGDGD,GUDGD,SBG 

48  FORMAT(/4X,'RENO =',E13.6,2X,'FRNOS=',E13.6,2X,'FRNO =',E13.6,/ 
1 4X,'GRN0 =',E13.6,2X,'RICHN=',E13.6,2X,'BGDGD=',E13.6,/ 
2 4X,'GUDGD=',E13.6,2X,'SBG =',E13.6/) 

C 
C ^    CREATION OF INTIAL PROFILES 

Y(NP3)=RD-RB 
EXPY=1. 
UIN=UA 
UEN=UD 
TMPI=TA 
TMPE=TD 
C1I=1. ■ 
C1E=0. ;.' 
FATT=0.10 
FAET=0.10 
FA1=FATT 
FA2=FAET 
DO 52 J=4,NF 
FBI(J)=0. 

52 FBE(J)=G. 
C  
C    INITIALIZE SOME OF THE PARAMETERS 
C 

DO 53 1=1,NP3 
UT(I)=0.0 
VT(I)=0.0 
UV(I)=C.O 
W(I)=0.0 
F4V(I)=0.0 

53  CONTINUE 
Y(1)=0. 
Y(2)=0. 
YEPLS=0.0 
RME=0.0 
U1DU0L=0.0 
T1DTOL=0.0 
SB=1.0 
SA=1.0 
F(3,l)=1.0 
FE=1.0 
Y(NP2)=Y(NP3) 
U(1)=UIN 
U(2)=UIN 
U(NP3)=UEN 
UCNP2)=UEN+1.0E-6 
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UHB=U(1)-U(NP3) ■ 
UHBS=UHB'''^2 
FS(2,1)=TMPI 
FS(2,2)=TMPI 
FS(2,NP3)=TMPE 
FS(2,NP2)=TMPE 
F(2,1)=C1I 
F(2,2)=C1I 
F(2,NP3)=C1E ■ 
F(2,NP2)=C1E 
DO 513 J=4,NF 

513 F(J,NP3)=FBE(J) 
IF(KIN.NE.2) GO TO 510 
DO 514 J=4,NF 

514 F(J,1)=FBI(J) 
GO TO 503 

510 F(4,1)=FA1-''^UHBS 
F(5 ,1)=0 . 10^'=-F(4, l)-"--.n . 5/(0 . 09--'^YCNP3)) 
F(6,l)=FArrfr(FS(2,l)-FS(2,NP3))--''--''2. 
F(7,1)=0.10*F(6,1)^>*1.5/(0.09*Y(NP3)) 

503 DO 516 J=4,NF 

F(J,2)=F(J,1) 
516 F(J,NP2)=F(J,NP3) 

C 
C     PROFILES 
C 

DYAF=1./FLOAT(N)**EXPY 
DO 520 1=2,NP2 

Y(I)=(1.-DYAF*FL0AT(NP2-I)**EXPY)*Y(NP3) 
YP2=Y(I)**2. 

U(I)=U(NP3) + (U(l)-U(NP3))--'^DEXP(-2.8--VYP2) 
FS(2,I)=TMPE+(TMPI-TMPE)*DEXP(-2.8*YP2/1.44) 
F(2,I)=C1E+(C1I-C1E)*DEXP(-2.8*YP2) 
F(3,I)=1.-F(2,I) 
F(4,I)=UHBS*FA1*DEXP(-1.7^>YP2) 
IF(KIN.EQ.2.AND.KEX.EQ.2) F(4,I)=FA1*UHBS*(1.-((Y(I)-Y(NP3)/2.) 

1 /(Y(NP3)/2.))**2) 
F(5,I)=0.10''^F(4,I)**i.5/(o.09*Y(NP3)) 
F(6,I)=F(6,1)*DEXP(-1.7*YP2) 
F(7,I)=0.10*F(6,I)**1.5/(0.09*Y(NP3)) 

520 CONTINUE 
DO 521 1=1,NP3 
RH0(I)=PDGSCN/FS(2,I)*WMIX 

521 F(1,I)=CMIX*FS(2,I)+.5*U(I)*U(I)+F(4,I) 
IF(KIN.EQ.3) YN0Z=2.*Y(NP3) 
IF(KIN.EQ.2) YN0Z=2.*YIN 

C CALCULATE INITIAL CD FUNCTION FOR ENU(I)   
DO 525 1=1,NP3 
CDFN(I)=0.07 

525 CVFN(I)=0.47 

WRITE(6,526) PKDEP(3),CDFN(3),CVFN(3),N 
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526 F0RMAT(/'PKDEP=',E13.6,1X,'CDFN =',E13.6,IX,'C\TN =',E13.6,1X, 
I'N   =',I5) 
DO 527 J=1,NF 
DO 527 1=1,NP3 

527 PREF(J,I)=1. 
C    CALCULATE OMEGA AND STREAM QUANTITIES AND WRITE  i . 

501 YMDP=1. 
DO 540 1=3,NP2 
IF(KRAD.EQ.l) YMDP=.5*(Y(I-1)+Y(I))+YIN 
RUA=.5*(RH0(I)^U(I)+RH0(I-1)--^U(I-1)) 

540 OM(I)=OM(I-1)+YMDP*RUA^(Y(I)-Y(I-1)) 
PEI=0M(NP2) 

C---.--OMEGA,OM(I),IS MADE DIMENSIONLESS HERE  
DO 541 1=3,NP2 

541 OM(I)=OM(I)/PEI 
PSII=YIN-''U(1)^RH0(1) 
IF(KRAD.EQ.l) PSII=PSII-'^YIN/2. 
PSIE=PSII+PEI 

C-- SET UP INITIAL SPREAD PARAMETER FOR U AND T 
F1A=CMIX'^TA+. 5^'^UA'^2 
F1D=CMIX'^TD+. 5^UD—2 
F2A=1. 
F2D=0. 
F3A=1.-F2A 
F3D=1.-F3A 
DYHA=0. ,  . 
UBARDL=1. 
DYHAV=1. 
YHA=0. 
YHALS=0.25 
YELS=0. 
DYHAT=0. 
TBARDL=1. 
DYHAVT=1. 
YHAT=0. 
YHATLS=0.25 
DO 549 K=1,NDX 
YYH(K)=0. 
YYHT(K)=0. 
XUU(K)=0. 

549  CONTINUE 
XUU(NDX)=XU 

C SET UP INITIAL ENTRAINMENT VELOCITY  
C   RTBDVB IS RATIO OF TEMP. TO VEL.LAYER AT BOUNDY,USE IN 
C   ENTRAIN.CONTROL 

RTBDVB=1.4' 
ENTV=0. 
ENTVLS=0. 
DENTV=0. 
YELS=RD 
IF(KIN.EQ.3) U1V=U(1) 
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■ FLOA=PSII 
IF(RC.LE.RB) GO TO 560 
DO 550 1=1,NP3 
YAB=Y(I)+YIN 
IF(YAB.LT.RC) GO TO 550 
IC=I 
GO TO 551 

550 CONTINUE 
551 FLOB=PEI*OM(IC) 

FLOC=PEI-FLOB 
ICM1=IC-1 
F2B=0. 
DO 552 I=2,ICM1 
0MDP=0M(I+1)-0M(I) 
TB=TB+(FS(2,I)+FS(2,I+1))^--0MDP 

552 F2B=F2B+(F(2,I)+F(2,I+l))--'--0MDP 
TB=.5--'-TB 
F2B=.5^F2B 
F3B=1.-F2B 
F2C=0. 
DO 553 I=IC,NP1 
0MDP=0M(H-1)-0M(I) 
TC=TC+(FS(2,I)+FS(2,I+1))*0MDP 

553 F2C=F2C+(F(2,I)+F(2,I+1))*0MDP 
TC=.5*TC ■ 
F2C=.5*F2C 
F3C=1.-F2C 
GO TO 570 

560 FLOB=0. 
F2B=0. 
F3B=0. 
FLOC=PEI 
F2C=0. 
DO 561 1=2,NPl 
0MDP=0M(I+1)-0M(I) 
TC=TC+(FS(2,I)+FS(2,I+l))*OMDP 

561 F2C=F2C+(F(2,I)+F(2,I+1))*0MDP 
TC=.5*TC 
F2C=.5-'*F2C 
F3C=1.-F2C 

570 FL0T0T=PEI 

CHAPTER6666666666666666666666666666666 THERMODYNAMIC PROPERTIES 666666 
C ■■''■******* -'•■■.'. A;. A A /. A /.;. ick    START OF MAIN LOOP ft****:?r******iWr!Wr**** 

60 CONTINUE - ' 
C 

603 CONTINUE 
C     ADJUST R(l) AND YIN 

IF(KIN.NE.2) GO TO 630 
IF(KRAD.EQ.l) GO TO 631 
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YIN=PSII/(U(1)^^RH0(1)) ■ • 
GO TO 630 

631 YIN=DSQRT(DABS(2.--^PSII/(RH0(1)-'>U(1)))) 
R(1)=YIN 

630 CONTINUE 
C 
C     STRIDEl STRIDEl STRIDEl STRIDEl 

CALL STRIDE(1) 
C 
C     RH0--U ■ R AND Y ARE CALCULATED 
-C     CALCULATION OF CHARACTERISTIC FLOW WIDTH AND UGL 

UHB=U(1)-U(NP3) 
01132=1./(UHB"*2) 
UHA=.5*UHB 
0'HC=DABS(UHA) 
UHA=UHA+U(NP3) 
UHE=DABS(UHB)/CDEXP(1.)) 
IHE=3 

C 
C  YEP= Y AT U= UMAX/EXP   
C  YHA= Y AT U= UMAX/2    
C  YHAT= Y AT T= TMAX/2.   
C 

DO 619 1=3,NP2 
IF(DABS(U(I)-U(NP3)).GT.UHE) GO TO 619 
IHE=I-1 
GO TO 618 

619 CONTINUE 
618 YEP=Y(IHE)+(UHE-U(IHE))*(Y(IHE+1)-Y(IHE))/(U(IHE+1)-U(IHE)) 

IHA=2 
DO 620 1=3,NP2 
IF(DABS(U(I)-U(NP3)).GT.UHC) GO TO 620 
IHA=I-1 
GO TO 621 

620 CONTINUE 
C 
C CALCULATE Y HALF (YHA)   
C 

621 YHA=Y(IHA)+(UHA-U(IHA))*(Y(IHA+1)-Y(IHA))/(U(IHA+1)-U(IHA)) 
YHR=YHA+YIN 
THB=FS(2,1)-FS(2,NP3) 
THB2=l./(THB'Wr2) 
THA=.5*THB  ^ 
THC=DABS(THA) 
THA=THA+FS(2,NP3) 
IHT=1 
DO 626 1=3,NP2 
IF(DABS(FS(2,I)-FS(2,NP3)).GT.THC)G0 TO 626 
IHT=I-1 
IFCIHT .GT. 0) GOTO 627 

626 CONTINUE 
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627 YHAT=Y(IHT) + (THA-FS(2,IHT))--HY(IHT+1)-Y(IHT))/ 
1 (FS(2,IHT+l)-FS(2,IHT)+.lE-5) 
DYHAT=(YHAT-YYHT( 1))/(XUU(iMDX)-XUU( 1)) 
DYHA=(YHA-YYH(1))/(XUU(NDX)-XUU(1)) 
DYHATL= (YHAT - YHATLS) / (XTJ - XP) 
YHDYHT=YHA/YHAT 
DYEP=(YEP-YEPLS)/(XU-XP) 

C 
C CALCULTE ENTRAINMENT COEFFICINT  
C 

DYE=-(YELS2-YE)/(XUU(NDX-2)-XP) 
ANG=ATAN(DYHA) 
ANG=COS(ANG) 
ENTV=RME*ANG/(RHO(NP3)-R(NP3))/RTBDVB 
ALFA=ENTV/U(1) 
ALFALO=RME^ANG/ rRH0(NP3)-'>R(NP3)'--U( 1)) /RTBDVB 
ALFAAX=RME-"-ANG/ (RHO(NP3)-"-U(1)'"^(Y(IHE)^>^KRAD)) /RTBDVB 
DENTV=(ENTV-ENTVLS)/(XU-XP) 
IF(KIN.NE.2) GO TO 610 

C 
C IF FLOW IS OF SHEAR LAYER    
C 

YHM=YHA 
UDI=.9*UHB 
UDIC=DABS(UDI) 
UDI=UDI+U(NP3) 
UDE=.1*UHB 
UDEC=DABS(UDE) 
UDE=UDE+U(NP3) 
YDI=0. 
IDI=2 
DO 622 1=3,NPl 
IF(DABSCU(I)-U(NP3)).GT.UDIC)G0 TO 622 
IDI=I-1 
IF(IDI .GT. 0) GO TO 623 

622 CONTINUE 

623 YDI=Y(IDI)+(UDI-U(IDI))*(Y(IDI+1)-Y(IDI))/(U(IDI+1)-U(IDI)) 
IDE=1 
DO 624 1=3,NPl 
IREAL=NP3-I+1 
IF(DABS(U(IREAL)-U(NP3)).LT.UDEC) GO TO 624 
IDE=IREAL 
IF(IDE.GT.O) GO TO 625 

624 CONTINUE 
625 YDE=Y(IDE)+(UDE-U(IDE))*(Y(IDE+1)-Y(IDE))/ (U(IDE+1)-U(IDE)) 

YHA=YDE-YDI 
C 
C CALCULATE RATE OF SPREAD  
C 

610 CONTINUE 
IF(U(NP3).LE.O.) GO TO 640 
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IF(DABS(UHB/U(NP3)).LT. .02) DYHA=DYHA--'^U(NP3)/UHB 
640  DYHALO=(YHA-YHALS)/DX 

YHALS=YHA 
YHATLS=YHAT 
YELS=YE 
YEPLS=YEP 
ENTVLS=ENTV 
YYH(NDX)=YHA 
YYHT(NDX)=YHAT 
XUU(NDX)=XP 
DO 650 K=I,NDXM1 
YYH(K)=YYH(K+1)        '      , 
YYHT(K)=YYHT(K4-l) 
XUU(K)=XUU(K+1) 

650 CONTINUE 
C 

CHAPTER7777777777777777777777777777777777777777  FORWARD STEP  777777777 
DX=FRA'^Y(NP3) 
IF(ISTEP.LT.50) DX=DX/FL0AT(51-ISTEP)    ■-   .V 

C 
IF(ISTEP.GE.IEND) GO TO 70      ■ 
IF(DX.LT.XEND-XU) GO TO 70 
DX=XEND-XU 
IEND=ISTEP+1 

70 IF(ISTEP.GE.IOUT) GO TO 71 
IF(DX.LT.XOUT-XU) GO TO 71 
DX=XOUT-XU 
I0UT=ISTEP+1 

71 IF(DX.GT.XULAST-XU) DX=XULAST-XU 
IF(DX.GT.O.) GO TO 73 
IFIN=1 
GO TO 1011 

C 
73 XD=XU+DX 

C     THIS IS JUST INITIAL GEN-ERAL SETUP ' ■ 
C      FURTHER ADJUSTMENTS TO DX ARE MADE IN CHAPTERS 8 AND 9. 
C 
C   -  

CHAPTER888888888888888888888888 ADJUST LONGITUDINAL CONDITIONS  8888888 
C 
C    CHAPTER8A   
C      I BOUNDARY 
C     SYMMETRY AXIS 

80 KIN=3 
RMI=0. 
YIN=0. 
R(1)=0. 
PS11=0. 

C      
85 KEX=2 

C     - UBAR 

-BOUNDARY CONDITIONS 

■FREE 
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89 UBAR=0. 
TBAR=0. 
DO 820 I=2,N'P1 
TBAR=TBAR+(FS (2 ,1 )+FS C2 ,1+l) )^>OMD (I) 

820 UBAR=UBAR+(U(I)+U(I+l))^rOMD(i) 
TBAR=.5"TBAR 
UBAR=.5«UBAR 
IF(KIN.EQ.2) UBAR=(UBAR-UA)^'PEI/PSIE+UA 
IF(KIN.EQ.2)TBAR=(TBAR-FS(2,NP3))^PEI/PSIE+FS(2,NP3) 

C 
C      

CHAPTER99999999g999999999999  TRANSPORT AND ENTRAINMENT PROPERTIES  9999 
C      LAMINAR VISCOSITY ACCORDING TO SQUARE-ROOT FORMULA, 
C WITH WEIGHTING ACCORDING TO MASS FRACTION 

DO 98 1=1,NP3 
FSAB=DABS(FS(2,I)) 

98 EMUCI)=VISMIX^'^DSQRT(FSAB) 
CONTINUE . -^ 
EMU(2)=EMU(1) 
EMU(NP2)=EMU(NP3) 

C 

C     AUX AUX AUX AUX AUX 
CALL AUX 

C  SOURCE TERM FOR K AND EP ALSO UV,W.VT.UT.TT.ARE CALCULATED 
5      ENTRAINMENT CONTROL. 

IF(KIN.NE.2) GO TO 94 
RAT=DABS((U(3)-U(l))/(U(NP3)-U(l)+l.E-30)) 
IF(RAT.LT.ULIM) EM U(2)=EM U(2)*RAT/ULIM 
RMI=2.*EM U(2) 

94 CONTINUE 
IF(KEX.NE.2) GO TO 97 
RAT=DABS((U(NPl)-U(NP3))/(U(NP3)-U(l)+l.E-30)) 
RME=-2.*EM U(NP1)*RTBDVB 
IF(RAT.LT.ULIM) RME=RME^(RAT/ULIM)**2 
IF(RAT.LT.ULIM*.5) RME=0. 

97 IF(XD.EQ.XEND.0R.XD.EQ.X0UT.0R.XD.EQ.XULAST.0R.IAX.EQ.ISTEP+1) 
1 GO TO 96 

C;     LIMIT ON INCREMENT IN PEL 
IF((DABS(RMI)+DABS(RME))*DX.LT.PEI^PEILIM) GO TO 96 
DX=PEI*PEILIM/(DABS(RMI)+DABS(RME)) 
XD=XU+DX 

96 CONTINUE 
C 

C     STRIDE2 STRIDE2-- STRIDE2 STRIDE2 
95 CALL STRIDE(2) 

C 
C SET UP A B C D ARRAY  
C   ________ 

CHAPTER 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10  OUTPUT  10 10 10 
C SET UP OUTPUT FORMAT  
1000 ANSTAT=NSTAT 
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ANPROF=NPROF 
ANPLOT=NPLOT 
IF(ISTEP.GT.O) GO TO 106 

CHAPTER lOA    HEADINGS 
REY=2 .-•>R(NP3)'>RH0(1)"UBAR/EMU( 1) 
EQRAT=0.0 

C 
WRITE(6,1013) KRAD,LESSON 

C 
1013 FORMATC/'KRAD =',13,lOX,'LESSON=',13,lOX/) 

WHITE(6,1010) UA,UB,UC,UD,TA,TB,TC,TD,RA,RB,RC,RD, 
1 XULAST,PRESS,PREEXP 

,E13.6,5X,'UB 
,E13.6,5X,'TA 
,E13.6,5X,'TD 
,E13.6,5X,'RC 

1010 FORMAT(/4X,'UA 
1 ,4X,'UD 
2 ,4X,'TC 
3 ,4X,'RB 
4 ,4X,'XULAST= 
LAB=V17 
WRITE(6,100) LAB,(0M(I),I=1,NP3) 
PRESS IMPRESS 

106 CONTINUE 

= ' ,E13.6,5X,'UC 
= ' ,E13.6,5X,'TB 
= ' ,E13.6,5X,'RA 
= ' ,E13.6.5X,'RD 

,E13.6,5X,'PRESS =' ,E13.6,5X,'PREEXP= 

,E13.6/ 
,E13.6/ 
,E13.6/ 
,E13.6/ 
,E13.6/) 

  IPRINT=0 GIVES NO OUTPUT,  =1 GIVES SINGLE VARIABLES ONLY, 
=2 GIVES BOTH SINGLE AND ARRAY (PROFILE) VARIABLES. 

1011 IPRINT=0 
IF(FLOAT(ISTEP/NSTAT).EQ.FLOAT(ISTEP)/ANSTAT) IPRINT=1 
IF(FLOAT(ISTEP/NPROF).EQ.FLOAT(ISTEP)/ANPROF) IPRINT=2 
IF(ISTEP.EQ.IEND.OR.ISTEP.EQ.IAX.OR.ISTEP.EQ.IOUT) IPRINT=2 
IF(ITEST.NE.O.OR.IFIN.NE.O) IPRINT=2 
  THE NEXT STATEMENT WOULD BE USED FOR A TYPICAL PLOT CONTROL 
IF(FLOAT(ISTEP/NPLOT).EQ.FLOAT(ISTEP)/ANPLOT) IPRINT=3 
  THE NEXT STATEMENT PROVIDES A PLOT JUST PRIOR TO TERMINATION 
IF(XU.GE.XULAST.OR.IFIN.NE.0.OR.ISTEP.EQ.LASTEP) IPRINT=3 

1015 ALFAX=RME"ANG/ (RHO(IHE)*UBAR'^(YEPLS-' 

CHAPTER IOC      
1200 IF(IPRINT.EQ.O) GO TO 110 

UBAR=0. 
DO 1021 1=2,NPl 

1021 UBAR=UBAR+0MD(I)*(U(I)+U(I+1)) 
UBAR=.5*UBAR 
UBARLS=UBARDL 
UBARDL=(UBAR-U(NP3))/UHB 
DUBAR=DABS(UBARDL-UBARLS)/UBARDL 
DDYHA=DABS((DYHA-DYHAV)) 
DYHAV=DYHA 
U1DU0=U(1)/(UA-U(NP3)) 
T1DT0=(FS(2,1)-TDD)/(TA-TDD) 

C  TEST FOR DEVELOPED FLOW  - 

■^KRAD)) 

--SINGLE STATION VARIABLES. 



214 

IFCDUBAR.LT.1.E-3.AND.DDYHA.LT.1.E-4.AND.ISTEP.GT.4000) IFIN=2 
IF(IFIN.EQ.2) IPRINT=3 
WRITE(6,1030) ISTEP,KRAD,KIN,KEX,FRN0S,PSII,PSIE,U1DU0, 

1 RMI,RME,PEI,U(1),YHA,DYHA,UBARDL,T1DT0 
C 
1030 FORMATC////'ISTEP ='19,SX,'KRAD =',I9,5X, 

,I9,5X,'KEX  =',I9,5X,/ 
,E9.3,5X,'PSII =',E9.3,5X,'PSIE =',E9.3,/ 
,E9.3,5X,'RMI =',E9.3,5X,'RME =',E9.3,/ 
,E9.3,5X,'U(1) =',E9.3,5X,'YHA =',E9.3,/ 
,E9.3,5X,'UBARDL=',E9.3.5X,'TIDTO =',E9.3,/) 

1       'KIN 
1 'FRNOS =' 
2 'UIDUO =' 
3 'PEI 
4 'DYHA =' 
XDD=XU/DIAD 
DU1DU0=(U1DU0L-U1DU0)/(XU-XP)/DIAD 
DT1DT0=(T1DT0L-T1DT0)/(XU-XP)/DIAD 
WRITE(6,1014) XDD,DU1DU0,DT1DT0,DYEP 

1014    FORMATCXDD       ='E9.3,5X,'DU1DU0=',E9.3,5X,'DT1DT0=',E9.3, 
1 5X,'DYEP    =',E9.3,/) 

U1DU0L=U1DU0 
T1DT0L=T1DT0 

WRITE(6,1036)   DUBAR,DDYHA,BPE,FS(2,1),FS(2,NP3),YHAT,DYHAT,RATTD 
1036 FORMATCDUBAR =',E9 . 3 ,5X,'DDYHA =',E9 . 3 ,5X, ' BPE       =',E9.3,5X, 

1 'FS2I     =',E9.3,5X,/'FS2E    =',E9.3,5X,'YHAT    =',E9.3,5X, 
2 'DYHAT =',E9.3,5X,'RATTD =',E9.3,/) 
WRITE (6,1037) ALFA,ENTV.DENTV,DYE,CE1,CE2 
1,ALFALO,DYHALO,ALFAX,DYHATL,YHDYHT 

1037 FORMAT('ALFA =',E9.3,5X,'ENTV =',E9.3,5X,'DENTV =',E9.3,5X, 
1 'DYE  =',E9.3,5X,/'CE1  =',E9.3,5X,'CE2  =',E9.3,5X, 
2 'ALFALO=',E9.3,5X,'DYHAL0=',E9.3,5X,/'ALFAX =',E9.3,5X, 
3 'DYHATL=',E9.3,5X,'YHDYHT=',E9.3,/) 
DO 1020 J=1,NF 

1020 FLUX(J)=0. 
DO 1035 1=2,NPl 
DO 1035 J=1,NF 

1035 FLUX(J)=FLUX(J)+0MD(I)*(F(J,I)+F(J,I+1)) 
UFLUX=PEI*UBAR 
DO 1022 J=1,NF 

1022 FLUX(J) = .5''-PEI*FLUX(J) 
C 

UREF=U(NP3)+l.E-30 
■ RUREF=UREF*RH0(NP3) 

AEXD=0. 
DO 1023 J=1,NF 
DFI(J)=F(J,l)-F(J,NP3)+l.E-30 

1023 DFE(J)=DFI(J)+F(J,1)-F(J,NP3) 
UFLUX=UFLUX-PEI*U(NP3)+U(I)"PSII 
GO TO (1041,1042,1043), NDEQPl 

1043 FLUX(3)=FLUX(3)-PSIE^F3D+F3A^PSII 
1042 FLUX(2)=FLUX(2)-PSIE'^F2D+F2A-'--PSII 
1041 FLUX(1)=FLUX(1)-PSIE^F1D+F1A--'^PSII 

PRESSD=PRESS/PRESS1-1. 
REL0=U(1)*2.'^YHA*RH0(1)/(VISMIX*DSQRT(FS(2,1))) 
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C 
wRITE(6,10 31)XU,DX,UFLUX,RELO 

1031 FORMATCXU   =',E9.3,5X,'DX   =',E9 . 3 ,5X,'UFLUX =',E9 . 3 ,5X, 
1  'RELO =',E9.3,/) 

C 
TK25=.5'''(F(4,2)+F(4,3)) 
E25=.5*(F(5,2)+F(5,3)) 

C 
1026 CONTINUE 

C 
CHAPTER lOD     PROFILES AND OTHER ARRAYS. 

IF(IPRINT.EQ.l) GO TO 110 

CHAPTER lODD    - - KINETIC ENERGY BALANCE 
C 

DO 1087 1=3,NPl 
FK3E2(I)=F(4,I)**3/F(5,I)-.'r*2 
FK4E3(I)=F(4,I)'^^4/F(5,I)--'"'^3 
DIV=U(1)*^3/YHA 
PROK(I)=PROK(I)/RHO(I)/DIV 
BUPROK(I)=BUPROK(I)/RHO(I)/DIV 
DIFK(I)=(ENU(I)*(R(I)+R(I+1))*(F(4,I+1)-F(4,I))/ 

1 ((Y(I+1)-YCI))*PREF(4,I))-ENU(I-1)*(R(I-1)+R(I))*(F(4,I)-F(4,I-1) 
2 )/((Y(I)-Y(I-l))*PREF(4,I)))/((Y(I+l)-Y(I-l))*R(I)) 
DIFK(I)=DIFK(I)/RHO(I)/DIV 
C0NK(I)=-(RHO(I)*U(I)*(F(4,I)-F4V(I))/(XU-XP)+PEI*(SA+SB'VOM(I)) 

1 *(F(4,I+l)-F(4,I-l))/((Y(I+l)-Y(I-l))VrR(I))) 
CONK(I)=CONK(I)/RHO(I)/DIV 
DIVT=FS(2,1)'W'2.*U(1)/YHAT 
PROT(I)=PROT(I)/RHO(I)/DIVT 
DIFTr(I) = (ENU(I)'^(R(I)+R(I+l))Vc(F(6,I+l)-F(6,I))/ 

1 ((Y(I+1)-Y(I))*PREF(6,I))-ENU(I-1)'KR(I-1)+R(I))*(F(6,I)-F(6,I-1) 
2 )/((Y(I)-Y(I-l))*PREF(6.I)))/((Y(I+l)-Y(I-l))*R(I)) 
DIFTr(I)=DIFTT(I)/RHO(I)/DIVT 
DIST(I)=CT^'F(5,I)*F(6,I)/F(4,I)/DIVT 

1087 CONTINUE 
C   lOE     lOE     lOE    
CHAPTER  lOE OUTPUT TRAVERSE PROFILES 
1086 CONTINUE 

LAB=V19 
DIV=YHA 
DO 1095 1=1,NP3 

1095 OUT(I)=Y(I)/DIV 
WRITE(6,100) LAB,R(1),(0UT(I),I=2,NP3),Y(NP3),YHA 
XAXIS=V12 
DO 1085 1=1,NP3 

1085 XPLOT(I)=OUT(I) 
LAB=V2 
SUB=0. 
DIV=1. 
IF(KIN.EQ.3) SUB=U(NP3) 
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IF(KIN.EQ.3) DIV=U(l)-U(NP3)+l.E-30 
DO 1094 1=1,NP3 

1094 OUT(I)=(U(I)-SUB)/DIV 
WRITE(6,100) LAB,U(1),(0UT(I),I=2,NP3),U(NP3),DIV 
NY=1 
YAXES(NY)=V20 
SYMB0L(NY)=SYMBL1(NY) 
DO 1084 1=1,NP3 

1084 YPL0T(NY,I)=OUT(I) 
IF(NDEQ.EQ.O) GO TO 1091 

C 
LAB=V21 
SUB=FS(2,NP3) 
DIV=l.E-30+FS(2,l)-FS(2,NP3) 
DO 1093 1=1,NP3 

1093 0UT(I)=(FS(2,I)-SUB)/DIV 
WRITE(6,100) LAB,FS(2,1),(0UT(I),I=2,NP3),FS(2,NP3),DIV 
NY=NY+1 
YAXES(NY)=V21 
SYMBOL(NY)=SYMBL1(NY) 
DO 1083 1=1,NP3 

1083 YPLGT(NY,I)=OUT(I) 
C 

LAB=V23 
VRITE(6,100) LAB,(RH0(I),I=1,NP3) 

C 
1091 CONTINUE 
9999 LAB=V24 

DIV=(U(1)-U(NP3))**2 
DO 1097 1=1,NP3 

1097 0UT(I)=F(4,I)/DIV 
WRITE(6,100) LAB,(0UT(I),I=1,NP3),DIV 
NY=NY+1 
YAXES(NY)=V24 
SYMB0L(NY)=SYMBL1(NY) ■ . 
DO 1098 1=1,NP3 

1098 YPLOT(NY,I)=OUT(I) 
c ..■■.'■ ^ 

LAB=V26 
DIV=(U(1)-U(NP3))**3/YHA 
DO 1096 1=1,NP3 

1096 0UT(I)=F(5,I)/DIV 
WRITE(6,100) LAB,(0UT(I),I=1,NP3),DIV 
NY=NY+1 
YAXES(NY)=V26 
SYMB0L(NY)=SYMBL1(NY)     : 
DO 1099 1=1,NP3 

1099 YPLOT(NY,I)=OUT(I) 
DITT=(FS(2,1)-FS(2,NP3))**2. 
IF(ISTEP.EQ.O) GO TO 1114 
LAB=V28 
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WRITE(6,100) LAB,(US(I),1=1,NTS) 
LAB=V29 
WRITE (6 ,100) LAB , (ENUTDN(I) , 1=1 ,xNP3) 
LAB=V30 
WRITE(6,1Q0) LAB,(ENU(I),I=1,NP3) 
LAB=V31 
WRITE(6,100) LAB,(ENUT(I),I=1,NP3) 
LAB=V32 
DIV=(U(1)-U(NP3))**2 
DO 1071 1=1,NP3 

1071 OUT(I)=UV(I)/DIV 
WRITE(6,100) LAB,(0UT(I),I=1,NP3),DIV 
IF(MODEL.NE.4) GO TO 1120 
LAB=V33 
DO 1100 1=1,NP3 

1100 OUT(I)=W(I)/DIV 
WRITE (6,100) LAB,(OUT(I), I=1,NT3),DIV 
LAB=V34 

. WRITE(6,100)LAB,(DIFTT(I),I=1,NP3) ' 
LAB=V35 
WRITE(6,100)LAB,(DIST(I),I=1,NP3),DIVT 
DIUT=U(1)*(FS(2,1)-FS(2,NP3)) 
LAB=V36 
DO 1105 1=1,NP3 

1105 OUT(I)=UT(I)/DIUT 
WRITE(6,100)LAB,(OUT(I),I=1,NP3),DIUT 
LAB=V37 
DO 1110 1=1,NP3 

1110 OUT(I)=VT(I)/DIUT 
WRITE(6,100)LAB,(OUT(I);l=l,NP3),DIUT 
LAB=V38 
WRITE(6,100)LAB,(PKDEP(I),I=1,NP3) 
LAB=V39 
WRITE(6,100)LAB,(PTDET(I),I=1,NP3) 
LAB=V40 
WRITE(6,100) LAB,(CDFN(I),I=1,NP3) 
LAB=V41 
WRITE(6,100) LAB,(CVFN(I),I=1,NP3) 
LAB=V42 
DO 1115 1=1,NP3 

1115 OUT(I)=TT(I)/DITT 
WRITE(6,100)LAB,(OUT(I),I=1,NP3),DHT 

1114 LAB=V43 
DO 1111 1=1,NP3 

1111 0UT(I)=F(6,I)/DITT 
WRITE(6,100)LAB, (OUT(I),I=1,NP3),DITT 
IF(ISTEP.EQ. 0) GO TO 110 

NY=NY+1 
YAXES(NY)=V44 
SYMBOL(NY)=SYMBL1(NY) 
DO 1113 1=1,NP3 
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1113 YPLOT(NY,I)=OUT(I) 
1120 CONTINUE 

LAB=V46 
WRITE(6,100) LAE,(DUDDY(I),I=1,NP3) 
LAB=V47 
WRITE(6,100) LAB,(DTDDY(I),I=1,NP3) 
LAB=V48 
WRITE(6,100) LAB,(C0NK(I),I=1,NP3) 
LAB=V49 ' :: ■ 
VRITE(6,100) LAB,(DIFK(I),I=1,NP3) 
LAB=V50 
WRITE(6,100) LAB,(PR0K(I),I=1,NP3) 
LAB=V51 
WRITE(6,100) LAB,(BUPR0K(I),I=1,NP3) 
LAB=V52 
WRITE(6,100)LAB,(PREF(6,I),I=1,NP3) 
LAB=V53 
WRITE(6,100)LAB,(PREF(5,I),I=1,NP3) 
LAB=V54 
VRITE(6,100) LAB,(PREF(4,I),I=1,NP3) 
LAB=V55 
WRITE(6,100) LAB,(PREF(1,I),I=1,NP3) 

1009 CONTINUE 
IF(IPRINT.EQ.2) GO TO 110 
IF(ISTEP.EQ.O) GO TO 110 

WRITE(6,1070)  XU,ISTEP,KRAD,FRNOS,DYHALO,DYHATL 
1070  FORMATCPLOT AT XU=',E9.3,1X,'ISTEP=M5,1X,'KRAD=',I5,1X, 

1   'FRNOS=',E9.3,1X,'DYHAL0=',E9.3,1X,'DYHATL=',E9.3/) 
CALL PLOTS(XPLOT,43,NP3,XAXIS,YPLOT,10,NY,YAXES,SYMBOL) 

NPL0T2=2 
IF(NPL0T2.NE.l)  GO TO  110 
NY=1 
YAXES(NY)=V32 
SYMBOL(NY)=V64 
DO  1201  1=1,NP3 

1201 YPLOT(NY,I)=UV(I) 
NY=NY+1 
YAXES(NY)=V33 
SYMBOL(NY)=V65 
DO  1210  1=1,NP3 

1210 YPLOT(NY,I)=W(I) 
NY=NY+1 
YAXES(NY)=V36 
SYMBOL(NY)=V66 
DO  1220  1=1,NP3 

1220 YPLOT(NY,I)=UT(I) 
NY=NY+1 
YAXES(NY)=V37 
LAB=V67 
DO  1230  1=1,NP3 
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1230 YPLOT(NY,I)=VT(I) ■■ ■ ■   ■ . 

CALL PLOTS(XPLOT,43,NP3,XAXIS,YPLOT,10,NY,YAXES,SYMBOL) 
C   - .-  
CHAPTER 11  11  11  11  11  11  11  11  11  11  11 END OF MAIN LOOP 

110 IF(ISTEP.GE.LASTEP.OR.XU.GE.XULAST.OR.IFIN.NE.O) GO TO 111 
XP=XU 
SA=RMI/PEI 
SB=(RME-RMI)/PEI 
DO 113 1=1,NP3 

113 F4V(I)=F(4,I) 
C 

LX=L'^ILONG 
IF(ISTEP.NE.LX)GO TO 114 
L=L+1 
XLONG(L)=XU/DD 
FL0NG(1,L)=(U(1)-U(NP3)) 
FL0NG(2,L)=(FS(2,1)-FS(2,NP3))/(TA-TD) 
FL0NG(3,L)=-ALFAX 
AFDTT=DABS(F(6,1)/DITT) 
FL0NG(4,L)=DSQRT(AFDTT) 
IF(NBY.EQ.O) GO TO 104 
FLONG(5,L)=FLONG(l,L)*XLONG(L)**(KRAD/3.) 
FL0NG(6,L)=FL0NG(2,L)*XL0NG(L)**((3.+2.*KRAD)/3.) 
GO TO 105 

104 CONTINUE 
FL0NG(5,L)=FL0NG(l,L)*XL0NG(L)**((i.+KRAD)/2.) 
FL0NG(6,L)=FL0NG(2,L)*XL0NG(L)**((l.+KRAD)/2.) 

105 FEI(L)=FE 
FL0NG(7,L)=F(4,1)/((U(1)-U(NP3))**2) 

C     STRIDES STRIDES STRIDES STRIDES 
114 CALL STRIDE(3) 

IF(IFIN) 1011,60,111 
C 

C   TERMINATION 
HI WRITE(6,112)   ISTEP,LASTEP,XU,XULAST,IFIN,DDYHA 
112 FORMAT(23H TERMINATED WITH ISTEP=,I5,8H LASTEP=,I5, 

1 4H XU=,1PE11.3,8H XULAST=,E11.3,6H IFIN=,I3,7H DDYHA=,E11.3) 
C------  llA     HA     IIA      IIA   
C   CHAPTER  HA OUTPUT LONGITUDINAL PROFILES 

NL0NG=1 
IF(NL0NG.EQ.0)G0 TO 120 
WRITE(6,103) 
DO 115 1=1,L 

115 VRITE(6,102)I,XL0NG(I),FL0NG(1,I),FL0NG(2,I),FL0NG(S,I),FEI(I) 
1 ,FL0NG(4,1),FL0NG(5,1),FL0NG(6,1),FL0NG(7,I) 

102 F0RMAT(I4,1P11E11.3) 
103 FORMATCSX,*L',4X,'X/D',4X,'U(1)/UA',2X,'(TC-TD)/(TA-TD)', 

1 2X,'-ALFAX',3X,'FE  INTGL',IX,'DSQRTdT)/(TC-TA)',IX,'UAXIAL*X' 
2 ,1X,'TAXIAL'^X',1X,'KENG') 

XAXIS=V68 
IF(L.GT.65)   L=65 
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IF(L .EQ. 65) GO TO 120 
DO 1310 1=1,L 

1310 XPLOT(I)=XLONG(I) 
NY=1 
DO 1330 J=l,3 

YAXES(Ny)=V69 
DO 1320 1=1,L 

1320 YPLOT(NY,I)=FLONG(J,I) 
1330 NY=NY+1 

SYMB0L(1)=SYMBL2(1) 
SYMB0L(2)=SYMBL2(2) 
SYMB0L(3)=SYMBL2(3) 
SYMB0L(4)=SYMBL2(4) 
YAXES(NY)=V72 
DO 1340 1=1,L 

1340 YPL0T(NY,I)=FEI(I) 
1350 FORMAT(1H1,35H PLOT LONGITUDINAL VARIABLES AT Y=0) 

CALL PLOTS(XPL0T,65,L,XAXIS,YPLOT,10,NY,YAXES,SYMBOL) 
C   -  
C  CHAPTER IIB CONTROL FOR CASES CALCULATION   

120 CONTINUE 
150 DO 119 1=1,NFS 

YY=Y(I)/YHA 
UU=(U(I)-U(NP3))/(U(l)-U(NP3)+l.E-30) 
WRITE(7,8888) YY,UU 

119  CONTINUE 
DO 129 1=1,NP3 
YY=Y(I)/YHA 
FF=F(4,I)/(U(1)-U(NP3))**2 

C    FF=F(4,I)/(U(1)**2) 
WRITE(7,8888) YY,FF 

129 CONTINUE 
DO 139 1=1,NP3 
YY=Y(I)/YHA 
FUV=UV(I)/(U(1)-U(NP3))**2 

C    FUV=UV(I)/(U(1)'W'2) 
WRITE(7,8888) YY.FUV 

139 CONTINUE 
DO 149 1=1,NP3 
yY=Y(I)/YHA 
FT=(FS(2,I)-FS(2,NP3))/(FS(2,1)-FS(2,NP3)) 
WRITE(7,8888) yY,FT 

149  CONTINUE ■'' 
DO 159 1=1,L 
UUU=FL0NG(1,1)/(DSQRT(UA't(UA-UD)) ) 
WRITE(7,8888) XL0NG(I),UUU 

159 CONTINUE 
8888 FORMATC 2E20.7) 

CALL EXIT 
C 100 FORMATdH ,A8 , IPllElO . 3 ,8(/9X. IIEIO . 3)) 
100 F0RMAT(//1H ,A8,1P5E14.7,8(/9X,5E14.7)) 
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C 100 FORMATdH , A8 , IPHEIO .3/(9X, IIEIO . 3)/(9X, 12E10 . 3)) 
101 FORMATCIH ,A8,11I11) 

END 
SUBROUTINE AUX 

C/ SUBROUTINE FOR PROGRAM GENMIX 4A 
IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
REAL'^S LAB 
DIMENSION YMPI(83),UAV(83),Z(83),FLAV(83),RAVE(83) 
DIMENSION DUD0(83),SC(83),SCV(83),GD(83),DS(2,43),YEDGE(6) 
COMMON/COMA/A(83),AJE(7),AJI(7),B(83),C(83),CSALFA,D(83),DPDX(83), 

1 DX,EMU(83),F(7,83),FS(5,83),IAX,IEND,IFIN,INDE(7),INDI(7),I0UT, 
2 ISTEP,ITEST,IUTRAP,JS,JSW,JV,JY.KEX,KIN,KRAD,N,ND2,NF,NOVEL,NPl, 
3 NP2,NP3,0M(83),0MD(83),P(83),PEI,PR(7),PREF(7,83),PSIE,PSII,R(83) 
4,RH0(83),RME,RMI,RU(83),SD(7,83),SU(7,83),TAUE,TAUI,U(83),XD,XU, 
5Y(83),YE,YI,ENU(83),NDEQ,BPI,BPE,DKl(83),DK2(83),EDKl(83),EDK2r83) 
6,US(83),FACTOR 
COMMON/COMB/ARRCON,EWALL,H,HFU,INERT,MASSTR,MODEL,OXDFU.PREEXP, 

1 PRESS,UBAR,AK,RE,FR,ALMG,UFAC 
C0MM0N/C0MC/ENUT(83),ENUTDN(83),DUDY(83),DUDDY(83),DTDY(83), 

1 DTDDY(83),PR0K(83),BUPR0K(S3),ENUPR(83),PREFI(7) 
2,CDFN(83) ,PKDEP(83) ,CVFN(83) ,UV(83) ,W(83) ,UT(83) , 
3 VT(83),TT(83),PTDET(83),PR0T(83),DIFTT(83),SUUK(83),SUUE(83), 
1 SUUT(83),FUUK(83),FUUE(83),FUUT(83) 
C0MM0N/C0NST/IZT,CMUF,GDM,GDIS,C1,C2,NCM,AL1,AID,CR1,CRD,BUOY, 

1 C1T,C1K,C2K,NIB,ENULIM,NBUPR0,CT,CE1,CE2,CT1,CC1,CC2,C2T,CSP,CE 
2 ,NPKDE,NPTDE,NALG,CAXIAL,PCLINR,LINEAR,LESSON,CE3,CM2,C2TM 
COMMON/AUXL/RENO,VISMIX,RHOA,TA,COEFEP,COEFED,EPSPK,EPSDT 
DATA Vl/'TEST 1'/,V2/'U*/,V3/'F(l,1)'/,V4/'F(2,I)'/,V5/•F(3,I)'/ 
DATA V6,V7,V8,V9,V10/'TEST2','FS(1,I)','FS(2,I)','FS(3,I)','RHO(I) 

1  '/ 
DATA V11,V12,V13,V14,V15/'TEST3','Y(I)','R(I)','RU(I)','TEST47 
DATA V16,V17,V18,V19,V20/'EMU(I)','OMEGA','TEST5','R1 YS','VEL'/ 
DATA V21,V22,V23,V24,V25 /'TEMP','T','RHO','KENGY','K'/ 

DATA V26,V27,V28,V29,V30/'DISSK','D','SU(I)','ENUTDN','ENU'/ 
DATA V31,V32,V33,V34,V35/'ENUT','UV','W,'DIFTT','DIST'/ 
DATA V36,V37,V38,V39,V40/'UT','VT','DKDEP','PTDET','CD FN'/ 
DATA V41,V42,V43,V44,V45/'CV FN','TT-AGL','TT-DEQ','TT','E'/ 
DATA V46,V47,V48,V49,V50/'DUDDY','DTDDY','CONK','DIFK','PROK'/ 
DATA V51,V52,V53,V54,V55/'BUPR0K','PREFTT','PREFEP' 
1,'PREF-K','PREF-T'/ 

C 
C SD(3,I) IS USED FOR R(I)*(Y(I+1)-Y(I-1)) 
C  
C  K E MODEL   
C CALCULATE V AND T GRADIENT 

500 DO 550 1=2,NP2 
CDFN(I)=0.07 

550 CVFN(I)=0.47 
600 DO 601 1=2,NPl 

YMPI(I)=Y(I+1)-Y(I) 
DUPI=U(I+1)-U(I) 
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DUDY(I)=DUPI/YMPI(I) 
DTDY(I)=(FS(2,I+1)-FS(2,I))/YMPI(I) ^  , 
UAV(I) = .5--"-(U(I)+U(I+l)) 
CDFN(I) = .5--KCDFN(I+1)+CDFN(I)) 

601 DUDO(I)=DUPI/OMD(I) 
DUDY(1)=0. 
DTDY(1)=0. 
DUDY(NP2)=DUDY(NP1) 
DTDY(NP2)=DTDY(NP1) 
CVFN(NP3)=CVFN(NP2) 
CDFN(NP3)=CDFN(NP2) 
DO 630 I =2,NP1 

C-- CALCULATE ,K=Z(I), EPSILON=FLAV(I),RAVE=R AVERAG  
Z(I)=.5*(F(4,I)+F(4,I+1)) 
FLAV(I)=.5*(F(5,I)+F(5,I+1)) 
RAVE(I)=.5*(R(I)+R(I+1)) 

C CALCULATE TU'RBULNT VISCOSITY 
628    ENUT(I)=0.5''-(RH0(I)+RHO(I+l))-''CDFN(I)'^Z(I)-'-'^2/FLAV(I) 

ENUTDN(I)=l. + (2./(2.'^ClT-1.4-PKDAVE+CT^nPTDAVE-l.))^Z(I) 
1/FLAV(I))*(BU0Y/FS(2,NP3))*(DTDY(I)/DUDY(I))^((1.-CM2)/(1.-CC2)) 
IF(ENUTDN(I).GT.ENULIM) ENUTDN(I)=ENULIM 

630 ENU(I)=ENUT(I)*ENUTDN(I) 
C CALCULATE REY. STRESS UV  

ENU(1)=ENU(2) 
ENU(NP2)=ENU(NP1) 
ENU(NP3)=ENU(NP2) 
ENUT(1)=ENUT(2) 
ENUT(NP2)=ENUT(NP1) 
ENUT(NP3)=ENUT(NP2) 
FLAV(1)=FLAV(2) 
FLAV(NP2)=FLAV(NP1) 
Z(1)=Z(2) 
Z(NP2)=Z(NP1) 
ENUTDN(1)=1. 
ENUTDN(NP2)=ENUTDN(NP1) 
ENUTDN(NP3)=ENUTDN(NP2) 
UV(NP3)=0. 
UV(1)=0. 
UV(NP2)=(UV(NP1)+UV(NP3))*.5 

C    
C 22222222222222222222222222 VISCOSITIES 
C       LAMINAR VISCOSITIES FOR CELL BOUNDARIES 

200 DO  23  1=2,NPl 
23 EMU(I)=.5*(EMU(I)+EMU(I+1)) 

C   -  TURBULENT CONTRIBUTION 
DO 20 1=2,NPl 
EMU(I)=EMU(I)+ENU(I) 

20 CONTINUE 
C      MODIFICATION OF EMU ARRAY 

29 DO 24 1=2,NPl 
24 EM U(I)=EMU(I)/(Y(I+1)-YCI)) 
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IF(KRAD.EQ.O) GO TO 25 
DO 26 1=2,NTl 

26 EM U(I)=EM U(I)--''.5--nR(I)+R(I+l)) 
25 CONTINUE 

C     -  INITIAL PREF S. 
DO 230 1=1,NP2 
PREF(1,I)=(1.-CC2)*C1T/CC1*ENUTDN(I) 
PREF(2,I)=1. 
PREF(3,I)=1. 
PREF(4,I)=1.0*(1-CC2)/(CSP''-CC1) 
PREF(5,I)=1.0*(l-CC2)/rCE*CCl) 
PREF(6,I)=2.^''ENU(I)^FLAV(I)/(CT1^^(RH0(I)+RH0(I+1))^Z(I)^'^Z(I)) 

230  PREF(7,I)=1. 
DO 231 J=1,NF 

231 PREF(J,NP3)=PREF(J,NP1) 
DO  227   1=1,NP3 

227  ENUPR(I)=ENU(I)/PREF(1,I) 
C333333333333333333       SOURCES 
C    VELOCITY U 
C CALCULATE SOURCE TERM IN M EQ  

DO 308 1=3,NPl 
308 US(I)=S D(3,I)*(DPDX(I)-BUOY*RHO(I)*(FS(2,I)-FS(2,NP3))/FS(2,NP3)) 

US(2)=S D(3,2)*(DPDX(2)-BU0Y*RH0(l)*(.25*(2.'tFS(2,l) + 
1 FS(2,2)+FS(2,3))/FS(2,NP3)-1.)) 
US(NP2)=S D(3,NP2)*(DPDX(NP2)-BU0Y*RHG(NP3)*(.25*(2.*FS(2,NP3)+ 

1 FS(2,NP2)+FS(2,NP1))/FS(2,NP3)-1.)) 
C TO CALCULATE SOURCE TERM FOR K AND EPS EQS  
C FIRST COMPUTE W,VT,TT,UT,UV,ETC-IN CENTRAL DIFFERENCE  
C     K AND EPS 
800 DO 801 1=2,NP2 

DTDDY(I)=.5"(DTDY(I)+DTDY(I-1)) 
801 DUDDY(I) = .5'''(DUDY(I)+DUDY(I-1)) 

DTDDY(1)=0. 
DUDDY(1)=0. 
F4KIN=.5'^(.5"-(F(4,3)+FC4,2))+FC4,1)) 
F5KIN=.5*(.5*(F(5,3)+F(5,2))+F(5,1)) 
F(4,2)=F4KIN 
F6KIN=.5*(.5*(F(6,3)+F(6,2))+F(6,1)) 
F(5,2)=F5KIN 
F(6,2)=F6KIN 
F(4,NP2)=0.5*(.5*(F(4,NP1)+FC4,NP2))+F(4,NP3)) 
F(5,NP2)=.5*(.5*(F(5,NP1)+F(5,NP2))+F(5,NP3)) 
FC6,NP2)=.5*(.5*(F(6,NP1)+F(6,NP2))+F(6,NP3)) . 

810 UV(1)=-.5*ENU(1)*DUDDY(1)/RH0(1) 
VISCOS=VISMIX*DSQRT(TA)/RHOA 
IF(MODEL.EQ.l) GO TO 812 
CE1=C0EFEP/DSQRT(REN0) 
CE2=C0EFED/DSQRT(REN0) 

812 CE3=CE1 
DO 850 1=2,NP2 
UV(I)=-.5--KExNU(I)+ENU(I-l))*DUDDY(I)/RHO(I)*1.0 
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VV(I)=2.-'-(CC2-l.+CCl+(CM2/CC2-CC2)---BU0Y-'-UT(I)/FS('2,NP3) 
1  /F(5,I))----F(4,I)/(3.-CCl) 
VT(I)=-2 .■•>?(4,1)'''VV(I)----DTDDY(I) / (F(5 ,1 )''•-(2.■-•■CIT 

1  +CT)) 
IF(NALG.EQ.O)   GO TO  820 

C TT(I)  HERE  IS  ALG  -  TT         
TT(I)=-2.--^F(4,I)*VT(I)*DTDDY(I)/(F(5,I)^-CT) 
F(6,I)=TT(I) 

820  CONTINUE 
UT(I)=(-UV(I)*DTDDY(I)-VT(I)*DUDDY(I)*(1.+C2T)+BU0Y*F(6,I) 

1 *(1.-C2TM)/FS(2,NP3))*F(4,I)/(.5^F(5,I)*(2--''C1T 
2 +0.5*CT)) 
PROK CI) =RHO (I) * (-UV (I)'^DUDDY (I)+BUOY''^UT (I)/FS ( 2, NP3)") 
RDY=.5*R(I)*(Y(I+1)-Y(I-1)) 
IF (I.EQ.2) RDY=YI-''R(2) 
IF (I.EQ.NP2) RDY=YE''-R(NP2) 
BUPROK(I)=RHO(I)--'-BUOY^'^UT(I)/FS(2,NP3) 
SU(4,I) = (PROK(I)-RHO(I)^1.00^F(5,I))-'--RDY 
PROKM=PROK(I) 
IF (LESSON.EQ. 2) PROKM=RHO(I)*(-UV(I)--'^DUDDY(I)+BUOY^UT(I) 

1 /FS(2,NP3)*(CE3/CE1)) 
FFF=DABS(F(5,I)) 
IF(MODEL.EQ.l) GO TO 830 
EPSPK=RDY*DSQRT(FFF/VISC0S)*(CE1*PR0KM) 
EPSDT=RDY*DSQRT(FFF/VISC0S)*(CE2*F(5,I)*RH0(I)) 
GO TO 840 

830 EPSPK=RDY*FFF/F(4,I)*(CE1*PR0KM) 
EPSDT=RDY*FFF*(CE2*FFF)/F(4,I)*RHO(I) 

840 SU(5,I)=EPSPK-EPSDT 
SU(5,I)=FACT0R*SU(5,I) 
PR0T(I)=RH0(I)*(-2.''-VT(I)*DTDDY(I)) 

850 SU(6,I)=(PR0T(I)-RH0(I)*CT*F(5,I)*F(6,I)/F(4,I))*RDY 
F(4,2)=2.*(2.*F4KIN-F(4,1))-F(4,3) 
F(5,2)=2.*(2.'^F5KIN-F(5,1))-F(5,3) 
F(6,2)=2.*(2.*F6KIN-F(6,1))-F(6,3) 
F(6,NP2)=2.*(2.*F(6,NP2)-F(6,NP3))-F(6,NP1) 
F(5,NP2)=2.*(2.*F(5,NP2)-F(5,NP3))-F(5,NP1) 
F(4,NP2)=2.*(2.*F(4,NP2)-F(4,NP3))-F(4,NP1) 

C  
RETURN 

100 F0RMAT(1H,A8,1P11E11.3/(9X,11E11.3)) 
END •      ■'■:■-'■ ■ ■;■- vi,,-: i- .;  ■::-:.:    ' 

SUBROUTINE STRIDE(ISW) 
C/ SUBROUTINE FOR PROGRAM GENMIX 4A 
0/  D.B.SPALDING, IMPERIAL COLLEGE, 1972   
C/ THIS SUBROUTINE PERFORMS THE SAME OPERATIONS AS THE ONE IN GENMIX4A 
C BUT MORE ECONOMICALLY. THE A,B,C ARRAYS ARE ONE-DIMENSIONAL. SOME 
C OFTEN USED FUNCTIONS OF OM ARE STORED, AND A D ARRAY SAVES 
C UNNECESSARY ARITffilETIC IN THE TDMA OPERATION. 
C -  

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
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DIMENSION A2(7),ANP2(7),B2(7),BNP2C7),C2(7),CNP2(7),D2(7).DNP2(7), 
1 AHLPT(83),B0MT3(S3),FDIFE(7), 
2 FDIFI(7),GE(7),GI(7),PBOM(83),PGOM(83),THLPT(83),TTPF(7) 
DIMENSION B0M(83),0MP0M(83) 
COMMONVCOMA/A(83),AJE(7),AJI(7).B(83),C(83),CSALFA,D(83),DPDX(83), 

1 DX,EMU(83),F(7,83),FS(5,83),IAX,IEND,IFIN,INDE(7),INDI(7),IOUT, 
2 ISTEP,ITEST,IUTRAP,JS,JSW,JV,JY,KEX,KIN,KRAD,N,NT)2,NF,NOVEL,NPl, 
3 NP2,NP3,0M(83),0MDC83),P(83),PEI,PR(7),PREF(7,83),PSIE,PSII,R(83) 
4,RHO(83),RME,RMI,RU(83),SD(7,83),SU(7,83),TAUE,TAUI,U(83),XD,XU, 
5Y(83),YE,YI,ENU(83),NDEQ,BPI,BPE,DK1(83),DK2(83),EDK1(83),EDK2(83) 
6,US(83),FACTOR 

C 
GO TO (1000,2000,3000,4000), ISW 

C 
CVr-iVVr:;tVr-:'c***rV-:Wr*^*-?r-:erVf***rr,VVT*TrVrVrVj**TV*A*-rr*  S T R I D E 1  *iriri:iritiritiz-^''T^'^-hrr-'.-rc 

1000 IF(ISTEP) 1003,1003,1100 
1003 OMI=.5-'-OM(3) 

0ME=.5"(1.-0M(NP1)) 
DO 1002 1=2,NP2 
B0M(I)=0M(I+1)-0M(I-1) 
B0MT3(I)=3.--B0M(I) 
0MP0M(I)=0M(I)+0M(I+1) 

1002 0MD(I)=0M(I+1)-0M(I) 
0MD(1)=BGM(2) 
BPE=1. 
BPI=1. 

Y(1)=0. 
IF(KRAD.EQ.l) GO TO 1100 
DO 1001 1=1,NP3 

1001 R(I)=1. 
R25=l. 
RN15=1. 
IF(ITEST.NE.O) WRITE(6,9010) (R(I),1=1,NP3),R25,RN15 

C -   CALCULATION OF RHO*U 'S   ■ 
1100 DO 1101 1=1,NP3 

IF(RHO(I).GT.O.) GO TO 1101 
WRITE(6,1108) RH0(I),I,RH0(1) 

1108 FORMAT„(36H vr^******** NEGATIVE OR ZERO RHO(I) = , IPEll. 3,6H AT I=, 
1 I3,6X,21HSET TO ABS OF RH0(1)=,E11.3,17H ******** STRIDEl) 

^ RH0(I)=DABS(RH0(1)) 
1101 RU(I)=RHO(I)*U(I) 

RU3=RU(3) 
RUN1=RU(NP1) 
DO 1102 1=2,NPl 

1102 RU(I)=.5*(RU(I)+RU(I+1)) 
IF(ITEST.NT.O) WRITE(6,9010) (RU(I),1=1,NP3),RUN1,RU3,PEI 

C  _   CALCULATION OF Y 'S AND R 'S   ■ 
^   -  Y'S FOR PLANE GEOMETRY 

YI=PEI*OMI/(BPI*RU(2)) 
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Y(3)=YH-PEI^>0MC3)/rRU(2)+RU3) 
Y(2)=2.'>YI-Y(3) 
DO 1103 1=4,NPl 

1103 Y(I)=Y(I-1)+PEI--'^0MD(I-1)/RU(I-1) 
YN15=Y(NP1)+PEI--''0MD(NP1)/(RU(NP1)+RUN1) 
YE=PEI--^OME/(BPE--^RU(NPl)) 
Y(NP3)=YN15+YE 
Y(NP2)=2.*YN15-Y(NP1) 
IFCKRAD.EQ.O) RETURN ' 

C    Y'S AND R'S FOR AXISYMMETRICAL GEOMETRY 
IFCCSALFA.EQ.O.) GO TO 1110 

C    CSALFA NE ZERO 
C0SD2=.5-''^CSALFA 
IF(R(l).NE.O.) GO TO 1105 

C  R(1)=0. 
DO 1106 1=2,NP3 
Y(I)=DSQRT(DABS(Y(I)/C0SD2)) 

1106 R(I)=Y(I)'>CSALFA 
YI=DSQRT(DABS(YI/C0SD2)) 
YN15=DSQRT(DABS(YN15/C0SD2)) 
GO TO 1107 

C     R(l) NE 0. 
1105 R1D2=.5*R(1) 

R1D2SQ=R1D2*R1D2 
DO 1104 1=2,NP3 
Y(l)=y(l)/(R1D2+DSQRT(DABS(R1D2SQ+C0SD2*Y(I)))) 

1104 R(I)=R(1)+Y(I)*CSALFA 
YI=YI/(R1D2+DSQRT(DABS(R1D2SQ+C0SD2*YI))) 
YN15=YN15/(R1D2+DSQRT(DABS(R1D2SQ+C0SD2*YN15))) 

1107 R25=R(1)+YI*CSALFA 
RN15=R(1)+YN15''-CSALFA 
YE=Y(NP3)-YN15 
RETURN 

C    CSALFA EQ ZERO 
1110 DO 1111 1=2,NP3 

Y(I)=Y(I)/R(1) 
1111 R(I)=R(1) 

yi=YI/R(l) 
YN15=YN15/R(1) 
R25=R(1) 
RN15=R(1) 
YE=Y(NP3)-YN15 
RETURN " 'y- 

C-irlciririfk-.'.-A ■/. A.'. A A A A A A A A A A A A A J. * iVJcJc^-frfrfriSr^^irfr^  S T R I D E 2  VL-A--A-* A A A A A A A A 

C   -  PRELIMINARIES FOR COEFFICIENTS 
2000 PX=PEI/DX 

PD8=.125'''PX 
PD4=PD8+PD8 
G=RMI-RME 
ARMI=DABS(RMI) 
ARME=DABS(RME) 

Wr** 
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GD4=.25"G 
PG=PX+G 
PGD8=.125"PG 
PGD4=PGD8+PGD8 
RMID2=.5"RMI 
DO 2004 I=2,iNP2 
PBOM(I)=PX-"-BOM(I) 

2004 PG0M(I)=PGD4''-0MD(I) 
P40MP=PD4''-B0M(2) 

C    GRID POINT 2 
C  TAUI, BPI, Tl 

T1=0. 
IF(KRAD.EQ.O) BPI=. 33333+. 66667-->RU(l)/RU(2) 
IF(KRAD.EQ.l) BPI=(R(1)*(5 .''^RU(1)+RU(2) )+3 .''^R25* 

1 (RU(l)+RUr2)))/6./(R(l)+R25)/RU(2) 
C   - --   BOUNDARY COEFFICIENTS FOR VELOCITY 
2002 HLP=RMID2-GD4--''0MP0M(2) 

AHLP=DABS(HLP) 
THLP=HLP+HLP 
THLPT(2)=THLP 
TP=EM U(2) 
TTP=TP+AHLP+DABS(TP-AHLP) 
A(2)=TTP-THLP-T1-PG0M(2) 
B(2)=2.*T1+RMI+ARMI 
C(2)=P40MP*(3.*U(2)+U(3))-US(2) 
D(2)=A(2)+B(2)+PB0M(2) 

C    BOUNDARY COEFFICIENTS FOR F'S 
IF(NF.EQ.O) GO TO 2304 
DO 2300 J=1,NF 
IF(J.GE.NDEQ+1.AND.J.LT.4) GO TO 2300 
TPF2=TP/PREF(J,2) 
TTPF(J)=TPF2+AHLP+DABS(TPF2-AHLP) 
T1F=0. 
FDIFI(J)=0. 

2302 A2(J)=TTPFCJ)-THLP-T1F-PG0M(2)+.5^SD(J,2) 
B2(J)=2.*T1F+RMI+ARMI 
SIMP=0. 
IF(J.EQ.5) SIMP=SU(5,2)*(1.-FACT0R)/FACT0R 
D2(J)=A2(J)+B2(J)+PB0M(2)-2.^'SD(J,2)-SIMP 
T=-T1F*FDIFI(J) 
rr=3.*F(J,2)+F(J,3) 
C2 (J)=P40MP*TT+2.'^(T+SU( J, 2) ) 
IF(J.EQ.S)C2(J)=P40MP*TT+2.*(T+SU(J,2)) 

2300 CONTINUE 
C    GRID POINT NP2 
C  TAUE, BPE, TNP3 
2304 TNP3=0. 

IF(KRAD.EQ.O) BPE=. 33333+. 66667--'^RU(NP3)/RU(NPl) 
IF(KRAD.EQ.l) BPE=(R(NP3)^(5.^RU(NP3)+RU(NP1))+3.*RN15* 

1            (RU(NP3)+RU(NPl)))/6./(R(NP3)+ RN15)/RU(NP1) 
C   -   BOUNDARY COEFFICIENTS FOR VELOCITY 
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2310  HLM=RMID2-GD4'--0MP0M(NP1) : 
AHLxM=DABS(HLM) 
THLM=HLM+HLM 
TM=EM U(NPl) 
TTM=TM+AHLM+DABS(TM-AHLM) 
P40MM=PD4^^B0M(NP2) 
A (NP 2)=2. ■••'TNP 3 - RME+ARME 
B(NP2)=TTM+THLM-TNP3-PG0M(NP1) 
C(NP2)=P40MM'^(3.-'''U(NP2)+U(NP1))-US(NP2) 
D(NP2)=A(NP2)+B(NP2)+PB0M(NP2) 
IF(NF.EQ.O) RETURN 

:  --   BOUNDARY COEFFICIENTS FOR F'S 
DO 2320.J=1,NF 
IF(J.GE.NDEQ+1.AND.J.LT.4) GO TO 2320 
TMF=TM/PREF(J,NP1) 
TTMF=TMF+AHLM+DAB S(TMF-AHLM) 
TNP3F=0. 
FDIFE(J)=0. 

2312 ANP2(J)=2.*TNP3F-RME+ARME 
BNP2(J)=TTMF+THLM-TNP3F-PG0M(NP1) + .5-->SD(J,NP2) 

SIMP=0. 

IF(J.EQ.5).SIMP=SU(5,NP2)*(1.-FACT0R)/FACT0R 

DNP2(J)=ANP2(J)+BNP2(J)+PB0M(NP2)-2.*SD(J,NP2)-SIMP 

T=-TNP3F*FDIFE(J) 

TT=3.*F(J,NP2)+F(J,NP1) 

CNP2(J)=P40MM*Tr+2.*(T+SU(J,NP2)) 
IF(J.EQ.5) CNP2(J)=P40MM*TT+2.*(T+SU(J,NP2)) 

2320 CONTINUE 
RETURN 

;-.Vi'v A A A A A ;. A ■'. ]'. A»'. A A ,'. A.'. A A A A A A A.'. A A A X A A A.'. A.'. A h       S T R I D E 3  ****iriri!*iriri;***it* 

3000 DO 3005 1=3,NPl 
THLM=THLP 
HLP=RMID2-GD4A0MP0M(I) 
THLP=HLP+HLP 
THLPT(I)=THLP 
AHLP=DABS(HLP) 

AHLPT(I)=AHLP 

TTM=TTP 
TP=EM U(I) 
TTP=TP+AHLP+DABS(TP-AHLP) 

A(I)=TTP-THLP-PGOM(I) 
B(I)=TrM+THLM-PGOM(I-1) 
C(I)=PD4A(B0MT3(I)*U(I)+0MD(I)*U(I+1)+0MD(I-1)*U(I-1))-US(I) 

D(I)=A(I)+B(I)+PB0M(I) 

D(I)=A(I)+B(I)+PB0M(I) 

3005 CONTINUE 

IF(KIN.EQ.2.AND.RU(1).NE.O.) U(1)=U(1)-DPDX(1)'^DX/RU(1) 
IF(KEX.EQ.2.AND.RU(NP3).N-E.0.) U(NP3)=U(NP3)-DPDX(NP3)^-DX/RU(NP3) 
   SOLVE FOR DOWNSTREAM U 'S   ■ 
B(2)=(B(2)*U(1)+C(2))/D(2) 
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A(2)=A(2)/D(2) 
DO 3048 1=3,NP2 
T=D(I)-B(I)^'^A(I-1) 
A(I)=A(I)/T 

3048 B(I) = (B(I)^-B(I-1)+C(I))/T 
DO 3050 IDASH=2,NP2 
I=N+4-IDASH 
U(I)=A(I)*U(I+l)+B(I) 

3050 CONTINUE 
C     

IF(KIN.EQ.3) U(1) = .5'^(U(2)4-U(3)) 
IF(KEX.EQ.3)U(NP3) = .5'^(U(NP1)+U(NP2)) 

C 
3013 IF(NF) 3060,3060,3014 
3014 DO 3320 J=1,NF 

IF(J.GE.N'DEQ+1.AND.J.LT.4) GO TO 3320 
C -■    SOLVE FOR DOWNSTREAM F 'S   ■ 

A(2)=A2CJ) 
B(2)=B2(J) 
C(2)=C2(J) 
D(2)=D2(J) 
A(NP2)=ANP2(J) 
B(NP2)=BNP2(J) 
C(NP2)=CNP2(J) 
D(NP2)=DNP2(J) 
DO 3002 1=3,NPl 
TTMF=TrPF(J) 
TPF=EM U(I)/PREF(J,I) 
TTPF(J)=TPF+AHLPT(I)+DAB S(TPF-AHLPT(I)) 
A(I)=TTPF(J)-THLPT(I)-PGOM(I) 
B(I)=TTMF+THLPT(I-1)-PG0M(I-1) 
C(I)=PD4*(BGMT3(I)*F(J,I)+0MD(I)*F(J,I+1)+0MD(I-1)'^F(J,I-1))+ 

1 2.*SU(J,I) 
SIMP=0. 
IF(J.EQ.5) SIMP=SU(5,I)*(1.TFACT0R)/FACT0R  . 

3002 D(I)=A(I)+B(I)+PB0M(I)-2.*SD(J,I)-SIMP 
c     

B(2)=(B(2)*F(J,1)+C(2))/D(2) 
A(2)=A(2)/D(2) 

DO 3148 1=3,NP2 
T=D(I)-B(I)*A(I-1) 

A(I)=A(I)/T 

3148 B(I)=(B(I)*B(I-1)+C(I))/T 
DO 3150 IDASH=2,NP2 
I=N+4-IDASH 

3150 F(J,I)=A(I)'^F(J,I+1)+B(I) 
C-   ADJUST F(J,1) AND F(J,NP3)    

GO TO (3220,3220,3230),KIN 
3230 F(J,1)=.5*(F(J,2)+F(J,3)) 
3220 GO TO (3320,3320,3330),KEX 
3330 F(J,NP3)=.5*(F(J,NP1)+F(J,NP2)) 
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3320  CONTINUE 
C          
3060 XU=XD 

C    ITEST=0 
PSII=PSII-RMI-->DX 
PSIE=PSIE-RME-''DX 
PEI=PSIE-PSII 
ISTEP=ISTEP+1 
RETURN 

CVrvVvVA-vVA^VvVvVv'.".'.".'.".'.';'.'.'.'.'.".'■■ A;'.AAi^cftiVi'.-tfr^i:   S T R I D E 4 

4000 CONTINUE 
ND2=N/2 
NP1=N+I 
NP2=N+2 
NP3=N+3 
0M(1)=0. 
0M(2)=0. ^' . " 
0M(NP3)=1. 
ISTEP=0 
IEND=10000 
IAX=10000 
IOUT=10000 
DX=l.E-30 
IFIN=0 
DO 4001 J=l,7 
DO 4001 1=1,NFS 
SU(J,I)=0. 

4001 SD(J,I)=0. 
RETURN 

9010 FORMATdH   ,1P11E11.3) 
END 
SUBROUTINE  PLOTS   (X,IDIM,IMAX,XAXIS,Y,JDIM,JMAX,YAXES.SYMBOL) 

C * 
C SUBROUTINE FOR PLOTTING J CURVES OF Y(J,I) AGAINST X(I). 
C * 
C X AND Y ARE ASSUMED TO BE IN ANY RANGE EXCEPT THAT NEGATIVE VALUES * 
C ARE PLOTTED AS ZERO. * 
C X AND Y ARE SCALED TO THE RANGE 0. TO 1. BY DIVISION BY THE MAXIMA, * 
C WHICH ARE ALSO PRINTED. * 
C IDIM IS THE VARIABLE DIMENSION FOR X. * 
C IMAX IS THE NUMBER OF X VALUES. * 
C XAXIS STORES THE NAME OF THE X-AXIS. * 
C JDIM IS THE VARIABLE DIMENSION FOR Y. * 
C JMAX IS THE NUMBER OF CURVES TO BE PLOTTED, (UP TO 10). * 
C THE ARRAY YAXES(J) STORES THE NAMES OF THE CURVES. * 
C THE ARRAY SYMBOL(J) STORES THE SINGLE CHARACTERS USED FOR PLOTTING. * 
C * 
Q ft A -.'c A- iV * Jt *i:iririririr!rifir/riT^-k-irfj ■;. .hi A -Jt:': Is it * A*ific:'. v'c J;.'.- ■.'■■ ■f,"is-iririrk-/firi!** .'■■ * -.'; ititit*it*ifiT-ir-:hiH:-i;-irit** 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION X(IDIM),Y(JDIM,IDIM),YAXES(JDIM).SYMBOL(JDIM), 
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1 A(101),YMAX(20) 
DATA DOT,CROSS,BLANK/IH.,1H+,1H / 

C---" — "  SCALING X ARRAY TO THE RANGE 0 TO 50 
X>LAX=l.E-30 
DO 1 I=1,IMAX 

1 IF(X(I).GT.XMAX) XMAX=X(I) 
DO 2 I=1,IMAX 
X(I)=X(I)/XMAX^'50. 

2 IF(X(I).LT.O.) X(I)=0. 
C""""* SCALING Y ARRAY TO THE RANGE 0 TO 100 

DO 3 J=1.JMAX 
YMAX(J)=l.E-30 
DO 4 I=1,IMAX 

4 IF(Y(J,I).GT.YMAX(J)) YMAX(J)=Y(J,I) 
DO 3 I=1,IMAX 
Y(J,I)=Y(J,I)/YMAX(J)'^1G0. 

3 IF(Y(J,I).LT.O.) Y(J,I)=0. 
C"""""  IDENTIFYING THE VARIOUS CURVES TO BE PLOTTED 

VRITE(6,103) XAXIS.XMAX 
WRITE(6,100) (YAXES(I),I=1,J>IAX) 
WRITE(6,106) (SYMB0L(I),I=1,JMAX) 
WRITE(6,102) (YMAX(I),I=1,JMAX) 
DO 5 1=1,11 

5 A(I)=0.1*FL0AT(I-1) 
WRITE(6,101) (A(I),I=1,11) 

C*****    MAIN LOOP.  EACH PASS PRODUCES AN X-CONSTANT LINE 
DO 40 1=1,51 
IF(I.EQ.1.0R.I.EQ.51) GO TO 32 
GO TO 33 

C*—** ALLOCATE . OR + AS MARKER ON THE Y-AXIS 
32 DO 30 K=l,101 
30 A(K)=DOT 

DO 31 K=ll,101,10 
31 A(K)=CROSS 

C"**** ALLOCATE . OR + MARK ON THE X-AXIS, ALSO THE APPROPRIATE X VALLi; 
33 A(1)=D0T 

A(101)=D0T 
K=I-1 

46 K=K-5 
IF(K)48,47,46 

47 A(1)=CR0SS 
A(101)=CROSS 

48 XL=0.02*FLOAT(I-1) 
C**"^* CHECK IF ANY Y( X(I) ) VALUE LIES ON THIS X-CONSTANT LINE 
C*""—  IF YES GO TO 41, OTHERWISE GO TO 42 

DO 43 K=1,IMAX 
IF(IFIX(X(K)+1.5)-I) 43,41,43 

C —""* LOCATE Y( X(I)  ) 
41 DO 44 J=1,JMAX 

NY=Y(J,K)+1.5 
A(NY)=SYMBOL(J) 
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44 CONTINUE ..i--,.,y   . :.. ,- ,   . 
GO'TO 42 ,   ^.^     . .     _.,, ,       ^^^-"•■"'"' -^"i;?^" 

43 CONTINUE       _ .,: :'-;..,:''.L :.::..;/        \,":1"^. 
CVr,Wr*Tr PRINT X-CONSTANT LINE " ''"     - .,.-,■••':'^":',^" 

42 wRiTE(6,io5) xL,(A(K),K=i,ioi),xL '   .;,;:':"'?.;.;" '1;^ 
C***** PUTTING BLANKS INTO X-CONSTANT LINE  /r"''-l'"Tt, t. !^- 

DO 49 K=l,101 ' ^-'^ •"'      ■•"'o'^i 
49 A(K)=BLANK "l^rC^ 
40 CONTINUE ..;        .t"'"':,^^ 

DO 50 1=1,11 .i;-;]..-     ,...,oX;ii 

50 A(I) = .1*FL0AT(I-1) "   '" "  '"••'■ '■•■'- ■•'" "^■'•^,;,, '.'^r' ",,^" 
wRiTE(6,io4) (A(i),i=i,ii) . .':^'::'':i::\' ;t 
RETURN ';:.'T^': "'tiA 

100 FORMATdlH Y-AXES  ARE ,5X, 10(1X,A10)) '■Z!^''-"'.'^^ 
101 FORMAT(1HO,2X,11F10.1) , i c..:. . , l., J:. .^i^ 
102 F0RMAT(15H MAXIMUfl VALUES , IPlOEll. 3) Ay 
103 FORMAT(IIHOX-AXIS IS ,A8,17H .MAXIMLll VALUE =,1PE10.3) 
104 F0RMAT(3X,11F10.1/1H1) 
105 F0RMAT(2H X,F6 . 2 ,3X, lOlAl ,F6 . 2)     ..,;> 
106 F0RMAT(7H SYMBOL, IIX, 10(1X,A10) )   ''-"■'' 

I END 
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